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Abstract

The emergence and dissemination of colistin resistance in Enterobacteriaceae mediated by plasmid-borne mcr
genes in recent years now pose a threat to public health. In this study, we isolated and characterized colistin-
resistant and/or mcr-positive E. coli from pig farms in Central China. Between 2018 and 2019, 594 samples were
collected and recovered 445 E. coli isolates. Among them, 33 with colistin resistance phenotypes and 37 that were
positive for mcr genes were identified, including 34 positive for mcr-1, one positive for mcr-3, and two positive for
both mcr-1 and mcr-3. An insertion of nine bases (“CTGGATACG") into mcr-1 in four mcr-positive isolates led to
gene dysfunction, and therefore did not confer the colistin resistance phenotype. Antimicrobial susceptibility testing
revealed that 37 mcr-positive isolates showed severe drug resistance profiles, as 50% of them were resistant to 20
types of antibiotics. Multilocus sequence typing revealed a heterogeneous group of sequence types in mcr-positive
isolates, among which ST10 (5/37), ST156 (5/37), and ST617 (4/37) were the predominant types. Plasmid
conjugation assays showed that mcr-carrying plasmids of 25 mcr-positive isolates were conjugated with E. coli
recipient, with conjugation frequencies ranging from 1.7 x 10 to 4.1 x 10 per recipient. Conjugation of these mcr
genes conferred a colistin resistance phenotype upon the recipient bacterium. PCR typing of plasmids harbored in
the 25 transconjugants determined six types of plasmid replicons, including IncX4 (14/25), FrepB (4/25), Incl2 (3/25),
IncHI2 (2/25), FIB (1/25), and Incl1 (1/25). This study contributes to the current understanding of antibiotic resistance
and molecular characteristics of colistin-resistant £. coli in pig farms.
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Background

Having first been discovered in the 1940s, polymyxins are
an old family of chemically distinct lipopeptide antibiotics
produced by the gram-positive bacterium Paenibacillus
polymyxa (Li et al. 2019a). In recent years, with the rapid
increase in multidrug-resistant gram-negative pathogens
in the clinic, particularly the “superbugs” Acinetobacter
baumannii, Pseudomonas aeruginosa, Klebsiella pneumo-
niae, and Escherichia coli, several polymyxin antibiotics,
especially polymyxin B and polymyxin E (or colistin), have
been used as the last therapeutic option for infections
caused by these pathogens (Li et al. 2019b). Mechanistic-
ally, polymyxin antibiotics largely exert their primary anti-
microbial mode of action by permeabilizing bacterial
outer membrane through a direct interaction with lipo-
polysaccharide (Li et al. 2019¢c). However, bacteria have
still successfully developed several resistance mechanisms
to combat the effect of polymyxins (Wang et al. 2021). Of
great concern is the mechanism conferred by plasmid-
mediated mcr gene (Liu et al. 2016). mcr gene encodes a
phosphoethanolamine (PEtN) transferase that helps to
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add a PEtN moiety to lipid A of lipopolysaccharide, in-
creasing its cationic charges and consequently decreasing
the binding of colistin to lipopolysaccharide (El-Sayed
Ahmed et al. 2020; Sun et al. 2018). Since the report about
a plasmid carrying mcr-1 in E. coli from both humans and
animals in China in 2016 (Liu et al. 2016), this colistin re-
sistance mechanism has received extensive attention
worldwide. In addition to micr-1, nine plasmid-borne mcr
genes (mcr-2~mcr-10) have been identified to date (Wang
et al. 2020a). These 10 mcr genes have been detected in
bacterial isolates from humans, animals, foods of animal
origin, and environment, and they confer resistance to
polymyxins (Andrade et al. 2020). The emergence of these
genes may accelerate global movement towards a post-
antibiotic era (Du et al. 2016; Paterson and Harris 2016).
Therefore, it is of great importance to monitor the preva-
lence of mcr-bearing bacteria in clinical activities.

As the bacterium in which plasmid-carrying mcr gene
was first determined (Liu et al. 2016), E. coli is an im-
portant zoonotic and foodborne pathogen that has a
great capacity to accumulate resistance genes, mostly
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through horizontal gene transfer. This bacterial species
is recognized as a “natural reservoir” of antimicrobial re-
sistance genes (ARGs) (Poirel et al. 2018). It’s also one
of the most frequently recovered bacteria in livestock, in
which the overuse and abuse of antimicrobials is pro-
posed as a primary reason for the acceleration, develop-
ment and spread of resistant bacteria (van Boeckel et al.
2017). From this point on, it will be necessary to moni-
tor the epidemiological characteristics of drug-resistant
E. coli in livestock. China is the largest pig-rearing coun-
try of the world. In this study, we report the isolation
and antimicrobial resistance phenotypes as well as gen-
etic characteristics of colistin-resistant E. coli and/or
mcr-positive E. coli from pig farms in Central China,
which is one of the primary pig-producing regions in
China. The aim of this study is to reveal the current
prevalence and diversion of colistin-resistant E. coli in
Chinese pig farms.

Results

Isolation of colistin-resistant E. coli and mcr-positive E. coli
from pig farms in Central China

By performing bacterial isolation and identification
(Fig. 1A), 445 E. coli strains were recovered from 594
farm-origin samples in Central China between 2018 and
2019 (Fig. 1B). The total isolation rate was 74.9%. Pheno-
type screening assays were performed in 33 E. coli iso-
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445). However, PCR detection identified 37 E. coli isolates
were positive for mcr genes (8.31%; 37/445), including 34
isolates positive only for mcr-1, one isolate positive only
for mcr-3, and two isolates positive for both mcr-1 and
mcr-3 (Fig. 1C). These 37 mcr-positive isolates included
the 33 isolates determined by phenotype screening assay.
Tests on MIC (minimum inhibitory concentration) of co-
listin among these 37 micr-positive isolates revealed that
MIC of 33 isolates ranging from 4 pg/mL to 8 pg/mlL,
while the remaining four isolates lower than 0.5 pg/mL
(Table 1).

To understand why the four mcr-1-carrying E. coli iso-
lates were sensitive to colistin, mcr-1 genes were
cloned from both colistin-resistant and colistin-sensitive
isolates. Nucleotide sequencing and sequence alignments
revealed that mcr-1 harbored by the four colistin-
sensitive E. coli had an insertion of nine bases
(“CTGGATACG”) at sites 946~954 bp compared to
mcr-1 in colistin-positive isolates, which led to an inser-
tion of three amino acid residues (“LDT”) at sites
314~316 in mobile colistin resistance (MCR) protein as
encoded by four colistin-sensitive E. coli (Fig. 1D). Next,
mcr-1 genes harbored by colistin-resistant E. coli (mcr-
1™ and colistin-sensitive E. coli (mcr-1%) were cloned
into the commercially available plasmid pMD™19-T
(TAKARA, Japan). pMD19-mcr-1%, pMD19-mcr-1°, and
pMD19-T were then transformed into TOP10 chem-

lates using agar containing 2 pg/mL colistin (7.42%; 33/ ically competent E. coli (Thermo-Fisher, US).
Table 1 Minimum inhibitory concentration (MIC) values for colistin of 37 mcr-positive E. coli isolates
Strain Mcr profile MIC (pg/mL) Strain Mcr profile MIC (pg/mL)
HeN1 mcr-1 8 HeN212 mcr-1 4
HeN7 mcr-1 8 HeN219 mcr-1+ mcr-3 4
HeN12 mcr-1 8 HeN227 mcr-3 4
HeN20 mcr-1 4 HeN228 mcr-1+ mcr-3 4
HeN24 mcr-1 4 HeN229 mcr-1 4
HeN33 mcr-1 4 HeN241 mcr-1 4
HeN35 mcr-1 4 HeN249 mcr-1 4
HeN98 mcr-1 4 HeN252 mcr-1 4
HeN100 mcr-1 4 HeN253 mcr-1 4
HeN115 mcr-1 4 HeN257 mcr-1 4
HeN191 mcr-1 4 HeN261 mcr-1 4
HeN192 mcr-1 4 HeN267 mcr-1 4
HeN194 mcr-1 4 HeN268 mcr-1 4
HeN195 mcr-1 4 HuB15 mcr-1 4
HeN198 mcr-1 4 HuB54 mcr-1 4
HeN199 mcr-1 4 HeN86 mcr-1 <0.25
HeN206 mcr-1 4 HeN87 mcr-1 <05
HeN208 mcr-1 4 HeN88 mcr-1 <0.25
HeN204 mcr-1 <05
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Fig. 2 Antimicrobial resistance phenotypes of mcr-positive E. coli isolates. A Heat map showing antimicrobial resistance patterns of mcr-positive isolates in
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tigecycline, MXF: moxifloxacin, CIP: ciprofloxacin, LVX: levofloxacin, NOR: norfloxacin, SXT: trimethoprim/sulfamethoxazole, FOS: fosfomycin, NIT: nitrofurantoin
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Antimicrobial susceptibility testing (AST) revealed that
MIC of colistin in E. coli strains harboring pMD;g-micr-
1%, pMDo-mcr-1° and pMD;o-T were 2 pg/mL, 0.5 pg/
mL and 0.25 pug/mL, respectively.

Antimicrobial resistance phenotypes of colistin-resistant
E. coli and mcr-positive E. coli

AST revealed that the 37 mcr-positive isolates showed
severe resistance profiles. All of them were resistant to
more than nine types of tested antibiotics; over 80%
(81.08%, 30/37) of the isolates were resistant to more
than 15 types of tested antibiotics; and approximately
24% (24.32%, 9/37) isolates were resistant to 20 types of
antibiotics (Fig. 2A). Among antibiotics tested here, re-
sistance to cefazolin (CFZ), cefuroxime (CFX), chloram-
phenicol (CHL), moxifloxacin (MXF) and tetracycline
(TET) were the common phenotypes, and all mcr-posi-
tive isolates were resistant to these five types (Fig. 2B).
In particular, approximately 22% mcr-positive isolates
were resistant to three carbapenem antibiotics tested
here: imipenem (IPM), meropenem (MRP) and ertape-
nem (ETP) (Fig. 2B).

Detection of antimicrobial resistance genes

detection of ARGs showed that over 70% micr-positive
isolates were positive for rmtD (94.59%, 35/37), floR
(94.59%, 35/37), blatepy (91.89%, 34/37), tetA (89.19%,
33/37), sul2 (75.68%, 28/37), sul3 (75.68%, 28/37) and
rmtB (70.27%, 26/37). However, fewer than 50% isolates
were positive for sull (48.65%, 18/37), blaxpm (29.73%,
11/37), armA (16.22%, 6/37), tetB (10.81%, 4/37), aac
(6)-Ib (8.11%, 3/37), and tetM (5.41%, 2/37). None of
the isolates were positive for rmtA, rmtC, gqnrA, qnrB,
gnrC, qnrD, tetC, blasyy or blactx v (Fig. 3A).

Among the detected ARGs, all mcr-positive isolates
were positive for ARGs accounting for resistance to sul-
fonamides (sull, sul2 and/or sul3), while 97% isolates
were positive for ARGs accounting for resistance to ami-
noglycosides (rmtD, rmtB and/or armA). Approximately
95% isolates were positive for ARGs for resistance to tet-
racyclines (tetA, tetB and/or tetM) and for resistance to
phenicol (floR). Totally 92% isolates were positive for
ARGs accounting for resistance to p-lactams in addition
to carbapenems (blatgy), and 32% isolates were positive
for ARGs for resistance to carbapenems (blanppr). Only
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8% isolates were positive for fluoroquinolone-resistant
ARGs (aac(6)-1b) (Fig. 3B).

Sequence types of colistin-resistant E. coli and mcr-
positive E. coli

MLST (multilocus sequence typing) analysis identified
17 types of sequence for 37 mcr-positive isolates, includ-
ing ST10 (5/17), ST156 (5/17), ST617 (4/17), ST101 (3/
17), ST7050 (3/17), ST4578 (3/17), ST48 (2/17), ST746
(2/17), ST4214 (2/17), ST34 (1/17), ST603 (1/17), ST29
(1/17), ST1286 (1/17), ST206 (1/17), ST695 (1/17),
ST5171 (1/17), and ST361 (1/17) (Fig 4). Phylogenetic
trees constructed based on MLST data revealed that sev-
eral sequence types showed close relationships (Fig. 4).

Conjugation of mcr-carrying plasmids

To assess the transferability of mcr-bearing plasmids,
bacterial conjugation experiments were performed be-
tween mcr-carrying E. coli and recipient E. coli C600.
Results showed that mcr-bearing plasmids from 25 iso-
lates in this study were conjugated, and the conjugation
frequencies ranged from 1.7 x 10 to 4.1 x 107 per re-
cipient (Table 2). AST results revealed that conjugating
mcr-bearing plasmids conferred a colistin resistance
phenotype to the recipient E. coli. MIC of colistin for

strain C600 was lower than 1 pg/mL while it increased
to 4 pg/mL for transconjugants (Table 3).

Types of mcr-carrying plasmids

PCR detection of above 25 transconjugants revealed
there were six plasmid types, namely IncX4 (14/25),
FrepB (4/25), IncI2 (3/25), IncHI2 (2/25), FIB (1/25) and
InclI1 (1/25). Among these plasmid types, IncX4 was the
most frequently detected, being found in 14 of the 25
transconjugants.

Discussion

The rapid increase and dissemination of colistin-
resistant Enterobacteriaceae as well as other gram-
negative bacteria carrying plasmid-borne mcr genes in
both humans and animals pose a major threat to global
public health (Paterson and Harris 2016). Therefore, an
extensive number of studies have monitored the preva-
lence and isolation of bacteria carrying plasmid-borne
mcr genes in both medical and veterinary environments
in recent years (Ilbeigi et al. 2021; Snyman et al. 2021;
Tufic-Garutti et al. 2021). In this study, we performed
an isolation and microbiological characterization of
colistin-resistant and mcr-positive E. coli isolates from
three provinces in Central China. Our study revealed
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total isolation rates of 5.56% (33/594) for colistin-
resistant E. coli and 6.23% (37/594) for mcr-positive E.
coli. Both rates were much lower than those reported
previously in China. In a recent study, frequency of co-
listin resistance in E. coli from pigs was 24.1% in 12
provinces of China from 2013-2014 (Huang et al. 2017),
while in another study, prevalence of colistin-resistant
mcr-1-harboring E. coli isolates in pigs from 14 Chinese

Table 2 Conjugation frequencies of mcr-carrying plasmids

provinces was as high as 45% in 2016 (Shen et al. 2020).
The relatively low prevalence rate determined in this
study may be due to China’s policy of banning the use of
colistin as a growth promoter in livestock in China
(Wang et al. 2020b). Following its implementation in
2017, it showed significant effects on reducing colistin
resistance in both animals and humans in China. For ex-
ample, a recent study showed that prevalence of colistin-

Conjugants Frequencies (per recipient) Conjugants Frequencies (per recipient)
HeN1C 2.1x10° HeN208C 16x107°
HeN7C 1.1x107° HeN219C 13%x10*
HeN20C 48x107° HeN227C 6.9x10™
HeN24C 22x10° HeN228C 76x10°
HeN33C 3.9x10° HeN241C 3.8x10°
HeN35C 16x10° HeN249C 23x10°

HeN115C 26x10° HeN252C 41x107
HeN191C 1.9%x10™ HeN253C 8.1x10™
HeN194C 12x10° HeN12C 20x10°
HeN195C 1.0%x107 HeN268C 16x10%
HeN198C 1.7%10° HeN9sC 34x10*
HeN199C 39%x10° HuB15C 42x10™
HeN206C 36x10*
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Table 3 Minimum inhibitory concentration (MIC) analysis of
colistin for transconjugants and the recipient E. coli C600

Conjugants MIC (ug/mL) Conjugants MIC (ug/mL)
HeN1C 4 HeN208C 4
HeN7C 4 HeN219C 4
HeN20C 4 HeN227C 4
HeN24C 4 HeN228C 4
HeN33C 4 HeN241C 4
HeN35C 4 HeN249C 4
HeN115C 4 HeN252C 4
HeN191C 4 HeN253C 4
HeN194C 4 HeN12C 4
HeN195C 4 HeN268C 4
HeN198C 4 HeN98C 4
HeN199C 4 HuB15C 4
HeN206C 4 C600 <1

resistant mcr-1-harboring E. coli isolates in pigs from 14
Chinese provinces decreased from 45% (in 2016) to 19%
after one year banning, with a remarkable reduction oc-
curring in 10 of 14 surveyed provinces (P < 0.0001)
(Shen et al. 2020). In the same study, a significant de-
crease in prevalence of mcr-1-harboring E. coli among
farm pigs, from 76% in 2016 to 24% in 2018 (P <
0.0001), was also observed in Guangzhou, the capital of
Guangdong Province in South China.

PCR detection results of this research revealed that all
colistin-resistant E. coli were positive for mcr-1 (Fig. 1C,
Table 1), suggesting that colistin resistance phenotype in
these isolates was conferred by this gene (Liu et al.
2016). It’s worth noting that MIC of colistin on colistin-
resistant mcr-1-harboring E. coli isolates determined in
this study were low (4 pg/ml or 8 pug/ml; Table 1), which
is consistent with those of other studies (Liu et al. 2016;
Quan et al. 2017). This low value might have occurred
because plasmid-mediated colistin resistance gene mcr-1
generally confers low-level resistance (Poirel et al. 2017;
Zhu et al. 2021). However, four mcr-1-positive isolates
that did not display colistin resistance phenotypes were
also identified (Fig. 1C, Table 1). Notably, this type of E.
coli has been reported recently, but the underlying
mechanism remains to be elucidated (Li et al. 2018). By
nucleotide sequencing and sequence alignment analyses,
mcr-1 gene carried by colistin-sensitive isolates showed
an insertion of several bases, which caused an insertion
of three amino acid residues (“LDT”) at sites 314~316 in
the protein (Fig. 1D). These insertions were located in
the catalytic domain of MCR-1 (residues 215-541) (Sto-
janoski et al. 2016), which may thereby lead to the dis-
ruption of catalytic activity of this protein. Next, we
intend to analyze structure of these inactive MCR
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proteins to reveal the non-working mechanisms. How-
ever, this hypothesis might be partly supported by our
AST assays in different TOP10 E. coli transformants
containing various plasmids (pMD19-mcr-1%, pMD19-
mcr-1° and pMD19-T), which revealed that MIC of
transformants containing pMD19-mcr-1° was 0.5 ug/
mL, while that of transformants containing pMD19-micr-
I® was 2 pg/mL (interpreted as colistin-resistant accord-
ing to the EUCAST breakpoint).

This work also revealed that all mcr-1-positive E. coli
isolates from pig farms had severe antimicrobial resist-
ance profiles. They were also resistant to antibiotics
commonly used in clinic, including World Health
Organization (WHO)-listed important antibiotics such
as aminoglycosides, broad-spectrum cephalosporins and
other B-lactams, and fluoroquinolones (Fig. 2). All of
these isolates could be defined as multidrug-resistant
bacteria and even extensively resistant bacteria, accord-
ing to the international expert proposal for interim
standard definitions for acquired resistance (Magiorakos
et al. 2012). Similar findings have also been reported in
other parts of China (Cheng et al. 2020; Tong et al.
2018; Yuan et al. 2021), as well as other countries
around the world (Clemente et al. 2019; Oh et al. 2020;
Zajac et al. 2019). The presence of these multidrug-
resistant E. coli strains at farm level poses a high prob-
ability of spreading them to humans along pork supply
chain since E. coli is a common food contaminating bac-
terium as well as a foodborne pathogen (Batz et al.
2011). In particular, eight mcr-positive isolates were also
resistant to three tested carbapenems (IPM, MRP, ETP)
(Fig. 2).

Previously, we reported the genomic characteristics of
these colistin and carbapenem co-resistant isolates, and
showed that these worrisome phenotypes were conferred
by plasmid-borne ARGs (mcr-1 and blanpyy.1) with conju-
gation capacity (Peng et al. 20194, b). It should be remem-
bered that both colistin and carbapenems are recognized
as last-resort antibiotics for treating infections caused by
multidrug-resistant gram-negative pathogens (Du et al.
2016). The existence of these isolates in food animals may
lead to having no antibiotics available in clinical settings if
they are transmitted to humans. The continuous monitor-
ing of these colistin and carbapenem co-resistant isolates
in both medical and veterinary environments is necessary
and important. Corresponding to the serious resistance
phenotypes determined here, ARG detection also revealed
a serious condition in which resistance genes were found
among these mcr-positive isolates. More than 90% isolates
were positive for ARGs accounting for resistance to sul-
fonamides (sull, sul2 and/or sul3), aminoglycosides
(rmtD, rmtB and/or armA), tetracyclines (tetA, tetB and/
or tetM), phenicol (floR) and B-lactams (blatgy) (Fig. 3).
Since these ARGs are frequently disseminated through
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horizontal transfer, with the help of plasmids and other
mobile genetic elements, these mcr-positive isolates har-
boring multiple ARGs may represent a major reservoir of
resistance genes that may be responsible for treatment
failures in both human and veterinary medicine (Poirel
et al. 2018).

By performing MLST analysis, a heterogeneous group
of sequence types were determined for 37 mcr-positive
isolates. ST10 (5/37), ST156 (5/37) and ST617 (4/37)
were the most predominant (Fig. 4). It has been reported
that E. coli ST10 and its related types were frequently re-
covered from livestock, food and human intestinal sam-
ples. A higher prevalence of plasmid-borne ARGs was
found in these types compared to others (Manges et al.
2017; Matamoros et al. 2017; Oteo et al. 2009). Similar
to these reports, E. coli ST10 and its related types
(ST1286, ST7050) showed severe AMR profiles and pos-
sessed many ARGs in addition to mcr-1, including
ESBL-encoding gene blatgy (Figs. 2 and 3), suggesting
that these sequence types pose a threat to public health.
In addition, 11 NDM and MCR co-producing E. coli iso-
lates were determined in this study (Fig. 3), and they
were assigned to ST617 (4/11), ST746 (2/11), ST7050
(2/11), ST156 (1/11), ST695 (1/11) and ST4578 (1/11)
(Fig. 4). Although most of these sequence types repre-
sent novel E. coli co-producing MCRs and NDMs, E. coli
strains such as ST617 and ST746, have been recovered
from both patients and diseased pigs (Gedebjerg et al.
2015; Hayer et al. 2020; Tian et al. 2020; Wu et al
2018). Considering that mcr commonly confers resist-
ance to the last-resort antibiotic colistin and blaxpm
commonly confers resistance to another last-resort anti-
biotic class, carbapenems, for treating infections caused
by gram-negative pathogens (Du et al. 2016), the recov-
ery of MCR and NDM co-produced in E. coli with po-
tentially pathogenic sequence types should receive more
attention. These bacteria might cause infections for
which there are no effective antibiotics available in clinic.
Continuous monitoring of these bacteria in both
humans and animals is necessary.

mcr genes are generally disseminated by plasmids (Liu
et al. 2016; Yi et al. 2017). To understand whether mcr
gene harbored in these mcr-positive isolates is carried by
plasmids and their plasmid types, plasmid conjugation
experiments were first performed. Results revealed that
mcr gene in 25 mcr-positive isolates was conjugated to
recipient E. coli, with conjugation frequencies ranging
from 1.7x 10° to 4.1x 10 per recipient (Table 2).
More importantly, the conjugation of these mcr genes
conferred a colistin resistance phenotype to the recipient
bacterium (Table 3). These findings indicate that mcr
genes carried by the isolates from pig farms in this study
possess transferability and could mediate the transmis-
sion of colistin resistance. PCR typing analysis of
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plasmids harbored in the 25 transconjugants revealed six
types of plasmid replicons, specifically, IncX4 (14/25),
FrepB (4/25), IncI2 (3/25), IncHI2 (2/25), FIB (1/25) and
IncIl (1/25). These findings are in part consistent with
those from other reports, in which researchers also
found that mcr genes were mostly detected in E. coli
harboring plasmids IncX4, IncHI2, IncI2 and/or Incll
(Al-Mir et al. 2021; Hofle et al. 2020; Olowo-Okere and
Yacouba 2020; Song et al. 2020; Zelendova et al. 2020).
While less common, mcr gene in E. coli carried by FIB
and FrepB plasmids have also been documented (Shafiq
et al. 2021).

Conclusion

In summary, we characterized drug resistance pheno-
types, ARG profiles, sequence types, and putative plas-
mid types of colistin-resistant and/or mcr-positive E. coli
isolates from pig farms in Central China in this study.
Results revealed that several mcr-positive E. coli did not
display a colistin resistance phenotype, which might be
because base mutations were present, thereby leading to
gene dysfunction. Notably, mcr-positive E. coli isolates
determined in this study displayed severe AMR profiles,
carried multiple ARGs, including those associated with
great public health concerns, indicating that these E. coli
isolates pose a threat to human health. This research
also revealed a heterogeneous group of sequence types
for mcr-positive E. coli isolates and several sequence
types, such as ST617 and ST746, which reportedly corre-
lated with diseases in both humans and pigs. These
clones should receive more attention. In addition, we
found that mcr genes in E. coli isolates from pig farms in
Central China were most likely to carry several types of
plasmids, and most of these plasmids possessed transfer-
ability and could help disseminate colistin resistance.
Prevalence of colistin-resistant and/or micr-positive E.
coli in pig farms of China will be continuously moni-
tored in the future.

Materials and methods

Sample collection and bacterial isolation

The study design is shown in Fig. 1A. Between 2018 and
2019, a total of 594 samples were collected, including
fecal samples from diarrheal pigs, anal swabs from
healthy pigs, and swabs of feeding and drinking troughs
and floors from nine farms in Henan, Hubei and Hunan
provinces in Central China for E. coli isolation (Fig. 1B).
Samples were maintained in sterilized buffered peptone
water (BPW) and shipped on ice to laboratory for imme-
diate treatment. To improve isolation efficacy, each col-
lected samples was pre-incubated in Luria-Bertani (LB)
broth (Sigma-Aldrich, MO, USA) at 37°C for 12 h.
Afterwards, sample culture was streaked on MacConkey
agars and incubated at 37°C for 12 h. Presumptive
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colonies with similar morphological characteristics to
those of E. coli were selected for further confirmation by
16S rRNA gene sequencing and PCR amplification of
seven housekeeping genes (adk, fumC, gyrA, icd, mdh,
purA and recA) in E. coli, as described previously (Wirth
et al. 2006). On each agar plates, five colonies were se-
lected, but only one confirmed E. coli colony was in-
cluded for further study.

Screening colistin-resistant isolates and mcr-positive
isolates

To screen isolates with a colistin resistance pheno-
type, recovered E. coli isolates were streaked onto
Miller-Hinton (MH) agar containing 2 pg/mL colistin
(concentration chosen based on the European Com-
mittee on  Antimicrobial Susceptibility = Testing
[EUCAST] clinical breakpoint 2018) and cultured at
37°C for 12 h. E. coli ATCC 25922 was used as a
quality control. In parallel, all E. coli isolates were
also selected as micr-positive strains by using PCR
with primers listed in Table S1. PCR assays were per-
formed in a 20 pL mixture containing 1 pL bacterial
DNA template, 1 pL forward or reverse primers, 10
pL 2x Master Mix (Vazyme, Nanjing, China), and 7
pL ddH,O. Thermocycling conditions were 95°C for 5
min, followed by 30 cycles of 95°C for 30 s, annealing
at 51~60°C for 30 s (Table S1), and 72°C for 2 min
30 s, with a final extension at 72°C for 5 min. PCR
products were analyzed by electrophoresis on a 1%
agarose gel.

Antimicrobial susceptibility testing

The resistance phenotypes of colistin-resistant isolates
and mcr-positive isolates were determined using broth
microdilution method in accordance with the protocol
published by the United States Clinical & Laboratory
Standard Institute (CLSI document M100, 28th Edi-
tion). A total of 28 types of antibiotics, namely ami-
kacin (AMK), gentamicin (GEN), tobramycin (TOB),
imipenem (IPM), meropenem (MRP), ertapenem
(ETP), colistin (CL), cefazolin (CFZ), cefuroxime
(CFX), cefoxitin (FOX), ceftazidime (CAZ), ceftriaxone
(CRO), cefepime (CPM), chloramphenicol (CHL), fos-
fomycin (FOS), nitrofurantoin (NIT), ciprofloxacin
(CIP), levofloxacin (LVX), moxifloxacin (MXF), nor-
floxacin (NOR), minocycline (MIN), tetracycline
(TET), aztreonam (AZM), tigecycline (TGC), amoxi-
cillin/clavulanate (AMC), ampicillin/sulbactam (AMS),
piperacillin/tazobactam (PTZ) and trimethoprim/sulfa-
methoxazole (SXT) were assessed. Results were inter-
preted using the CLSI breakpoints (CLSI M100, 28th
Edition). If a CLSI breakpoint was not available, a
EUCAST breakpoint was used. E. coli ATCC 25922
was used for quality control.
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Detection of antimicrobial resistance genes

Antimicrobial resistance genes (ARGs) harbored in
screened colistin-resistant E. coli were detected by PCR
with primers listed in Table S1. A total of 22 types of
ARGs that conferred resistance to six antibiotic classes
were detected. PCR assays were performed the same as
isolate screening described above.

Multilocus sequence typing

Multilocus sequence typing (MLST) was performed by fol-
lowing protocol published in the E. coli MLST database
(https://enterobase.warwick.ac.uk/species/ecoli/). ~ Sequence
types were assigned based on the alleles of seven housing-
keeping genes in E. coli (adk, fumC, gyrA, icd, mdh, purA
and recA). Primers used for amplifying these genes were
listed in Table S1. PCR assays were performed in a 30 pL
mixture containing 1 pL bacterial DNA template, 1 pL for-
ward or reverse primers, 15 puL 2x Phanta Master Mix
(Vazyme, Nanjing, China), and 12 pL ddH,O. PCR assays
were performed the same as isolate screening described
above. The confirmed products were sent for nucleotide se-
quencing and DNA sequences were submitted to the E. coli
MLST database (https://enterobase.warwick.ac.uk/species/
ecoli/) for sequence type determination.

Plasmid conjugation

Plasmid conjugation assays between micr-positive E. coli
(donor) and rifampin-resistant E. coli C600 (recipient)
were performed on a nitrocellulose membrane, as de-
scribed previously (Peng et al. 2019a). In brief, a mid-log
phase donor and the recipient strains (ODggg = 0.5~0.6)
were mixed at a ratio of 1:3 (v/v). The bacterial mixture
was then spotted onto a nitrocellulose membrane that
was pre-plated on LB agar. After a 12 h incubation at
37°C, bacteria on the membrane were washed off using
LB broth and were shaken at 37°C for 4 h. Lastly, the
transconjugants were selected on LB agar plates laced
with rifampin (1000 pg/mL; our pretests showed that all
the E. coli donor strains could be inhibited by this con-
centration) plus colistin (2 pg/mL). MIC for colistin of
transconjugants were determined using broth microdilu-
tion method as mentioned above. E. coli ATCC 25922
was used as quality control.

Plasmid typing
Putative types of mcr-carrying plasmids were determined
by PCR assays with primers listed in Table S1. PCR as-
says were performed the same as isolate screening de-
scribed above.
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