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Abstract 

Coronaviruses are widespread in nature and can infect mammals and poultry, making them a public health concern. 
Globally, prevention and control of emerging and re-emerging animal coronaviruses is a great challenge. The mecha-
nisms of virus-mediated immune responses have important implications for research on virus prevention and control. 
The antigenic epitope is a chemical group capable of stimulating the production of antibodies or sensitized lympho-
cytes, playing an important role in antiviral immune responses. Thus, it can shed light on the development of diagnos-
tic methods and novel vaccines. Here, we have reviewed advances in animal coronavirus antigenic epitope research, 
aiming to provide a reference for the prevention and control of animal and human coronaviruses.
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Introduction
Coronaviruses (CoVs) are positive-sense, single-stranded 
RNA viruses belonging to the Coronaviridae family of 
the Nidovirales order. Based on their genome sequences, 
they fall into four genera: alphacoronavirus (α-CoV), 
betacoronavirus (β-CoV), gammacoronavirus (γ-CoV), 
and deltacoronavirus (δ-CoV) (Li 2016; Zhang et  al. 
2021a). Coronaviruses have a genome size of approxi-
mately 25,000–30,000 nucleotides (nt) and consist of at 
least six open reading frames (ORFs) in the following 
order: ORF1a, ORF1b, spike (S), envelope (E), membrane 

(M), and nucleocapsid (N). Some coronaviruses encode 
hemagglutinin esterase (HE) (Brian and Baric 2005).

Animal coronaviruses (animal CoVs) have a wide range 
of host tropisms and represent a health risk to livestock 
production. Since the discovery of infectious bronchitis 
virus (IBV) in the 1930s, numerous animal CoVs have 
been identified in pigs, rats, cats, dogs, cattle and horses, 
belonging to four subgenera of the family Coronaviri-
dae (Fig.  1) (Hudson and Beaudette 1932; Woo et  al. 
2009; Zhang et al. 2021a). It is noteworthy that the pre-
vention and control of emerging and re-emerging CoVs, 
such as porcine deltacoronavirus (PDCoV), swine acute 
diarrhea syndrome coronavirus (SADS-CoV), and por-
cine epidemic diarrhea virus (PEDV), represents a major 
global challenge (Wang et al. 2019). Antigen epitopes are 
chemical moieties located on the surface of an antigen 
molecule that possess a unique structure and antigenic 
activity. They represent a bioactive region on the antigen 
molecule that can stimulate the host immune system to 
produce antibodies or immunogenic lymphocytes and 
can be recognized by these immune cells. Therefore, the 
investigation of antigenic epitopes helps our understand-
ing aboutvirus-mediated immune response and provides 
a basis for the design of antiviral strategies, which is an 
intense area of virology research. Although the high 
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output of research on animal CoV antigenic epitopes has 
promoted the study of antigenic epitope diagnostic meth-
ods and vaccines, there are still challenges in the identifi-
cation and application of animal CoV antigen epitopes.

Distribution of antigen epitopes in animal CoVs
Based on the interaction with antigen receptors on cells, 
epitopes are classified as B-cell or T-cell epitopes, which 
can induce humoral or specific cellular immunity, respec-
tively. Continuous antigenic epitopes, also known as lin-
ear epitopes, are characterized by a continuous stretch 
of amino acids in the peptide chain. They are typically 
found on T-cell epitopes and some B-cell epitopes. Con-
formational antigenic epitopes, on the other hand, are 
formed by amino acids that are adjacent in space but not 
continuous in sequence and are only present on B-cell 
epitopes (Barlow et al. 1986). According to the immune 
epitope database (IEDB; www.​iedb.​org) (Vita et al. 2010), 
multiple B- and T-cell epitopes have been identified in 
several animal CoVs, including TGEV, PEDV, SADS-CoV, 
FIPV, MHV, BCoV, IBV and PDCoV (Fig. 2A) (Table S1).

B-cell epitopes have been reported in all eight animal 
CoVs mentioned above. The main epitopes are on S, M 
and N proteins (Fig. 2A, Blue), and two B-cell epitopes 
have been found on NS7a protein of SADS-CoV (Qin 

et  al. 2022). Additionally, four and six B-cell epitopes 
have been reported on the RNA-dependent RNA poly-
merase (RdRp) of TGEV and on the RNA polymerase of 
MHV, respectively (Mathieu et  al. 2004; Nogales et  al. 
2011). Conformational epitopes are epitopes that bind 
specifically to antibodies that block the cellular recep-
tors used by viruses to bind to cells. This is a critical 
step in the development of diagnostic reagents. How-
ever, only one potential epitope has been detected in 
the PEDV N protein (residues 18–133) (Wang et  al. 
2016). T-cell epitopes have been reported in four animal 
CoVs, including FIPV, MHV, IBV and TGEV (Fig.  2A, 
Orange). Similar to B-cell epitopes, T-cell epitopes are 
predominantly located on the S protein, followed by 
N and M proteins, and two T-cell epitopes have been 
reported on replicase polyprotein 1ab (pp1ab) of MHV 
(Croxford et al. 2006; Ercolini et al. 2007).

Coronavirus S protein is incorporated into the viral 
envelope and facilitates viral entry into target cells. In 
this process, the surface unit S1 binds to a cellular recep-
tor, while the transmembrane unit S2 enables fusion of 
the viral membrane to the host cell membrane (Hulswit 
et al. 2016; Millet and Whittaker 2018). Membrane fusion 
requires S protein cleavage by host cell proteases at the 
S1/S2 site, resulting in S protein activation (Hoffmann 
et  al. 2020; Hulswit et  al. 2016; Millet and Whittaker 

Fig. 1  Phylogenetic analysis based on the genome of coronavirus. A neighbor-joining phylogenetic tree was built using the p-distance model and 
1,000 bootstrap replicates

http://www.iedb.org
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2018). The 3D structure model of S protein showed that 
the antigen epitopes of PEDV (722–731, 747–771), MHV 
(766–780), and BCoV (711–783) were identified at the 
S1/S2 junction (Gillam and Zhang 2018; Khanolkar et al. 
2010; Kong et al. 2020; Okda et al. 2017; Sun et al. 2008; 
Vautherot et al. 1992) (Fig. 2B).

Applications of animal CoV antigen epitopes
Application of antigen epitopes in vaccines
Antigenic epitopes can induce humoral immunity or spe-
cific cellular immunity that is crucial for inducing antivi-
ral immune responses. They are commonly deployed in 

the development of safe and effective vaccines. Currently, 
the known animal CoV antigen epitopes offer a basis for 
the development of epitope vaccines (Table 1).

 S proteins, especially the S1 of PEDV, are a key target 
for virus neutralization and vaccine development (Hain 
et al. 2016; Makadiya et al. 2016; Oh et al. 2014; Subrama-
niam et al. 2017). The B-cell epitope Y748SNIGVCK755 on 
S1 protein of PEDV has been validated for potential use 
in vaccine development (Gillam et  al. 2018; Okda et  al. 
2017). Gillam reported that a Y748SNIGVCK755-based 
epitope vaccine that used hepatitis B virus core antigen 
(HBcAg) as a vector efficiently elicited the production 
of anti-PEDV neutralizing antibodies in mice (Gillam 

Fig. 2  A Location of antigen epitopes in animal CoV genomes. B Distribution of antigen epitopes in the S1/S2 junction of animal CoV S proteins. 
The predicted tertiary structures of the S region of PEDV (PDB ID: 6VV5), BCoV (PDB ID: 6NZK), and MHV (PDB ID: 3JCL) were modeled using the 
open-source modeling server SWISS-MODEL (https://​swiss​model.​expasy.​org/) from the Swiss Institute of Bioinformatics (Biasini et al. 2014). 
Illustrations of these modeled tertiary structures were obtained using the python-based molecular viewer PyMOL (The PyMOL Molecular Graphics 
System, V. 1.7.4 Schrödinger, LLC)

https://swissmodel.expasy.org/
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and Zhang 2018). PEDV collagenase equivalent domain 
(COE), a crucial antigenic region within the viral S pro-
tein, has been widely used in the development of subunit 
vaccines (Ge et al. 2012; Ma et al. 2018). Sun reported a 
B-cell epitope, T592SLLASACTIDLFGYP607, within the 
COE that was conserved among G1 and G2 PEDV strains 
and may mediate the production of neutralizing antibod-
ies (Sun et al. 2019).

Developing an FIP-preventive vaccine requires an 
antigen that does not induce antibody-dependent 
enhancement (ADE), and T helper (Th) 1 activity plays 
an important role in protecting against FIPV infection 
(Gelain et al. 2006; Kiss et al. 2004; Pedersen 2009; Weiss 
and Cox 1989). Satoh and Takano identified Th1 and lin-
ear immunodominant antibody-binding epitopes in the 
S1 domain, M protein and N protein of FIPV (Satoh et al. 
2011; Takano et  al. 2014). It has been shown that the 
T-cell epitopes N621NYLTFNKFCLSLSPVGANC640 (II-
S1-24), V81YGIKMLIMWLLWPIVLALT100 (I-M-9), and 
G81QRKELPERWFFYFLGTGPH100 (NP-7) strongly induce 
Th1 activity. This knowledge may guide the development of 
epitope vaccines against FIPV infection.

The broad cytotoxic T lymphocyte (CTL) response 
against IBV is a crucial factor in viral replication con-
trol (Cavanagh 2007; Collisson et al. 2000). Tan reported 
that four CTL epitopes of IBV (S413RIQTATDP421, 
S517RNATGSQP525, G45AYAVVNV52 and 
S413RIQTATQP421) can stimulate CD8+ T-cell prolifera-
tion and IFN-γ secretion (Tan et al. 2016). In vivo studies 
revealed that a poly-CTL epitope-based vaccine (pV-S1T) 

constructed by inserting the nucleotide sequences of the 
above four CTL epitopes into the pVAX1 vector provided 
90% protection against an avirulent IBV strain.

The N-terminus of TGEV S protein contains four 
antigenic sites, A, B, C and D, which are involved in the 
stimulation of neutralizing antibodies (Delmas et  al. 
1990). Past studies have shown that the A site is pre-
dominantly responsible for stimulating neutralizing anti-
bodies (Correa et  al. 1990; Delmas et  al. 1990; Laviada 
et  al. 1990; Meng et  al. 2013, 2011; Zhao et  al. 2013). 
Yuan constructed a recombinant swinepox virus (rSPV-
SA) expressing the TGEV S-A site (533–705) (Yuan et al. 
2015). The results from passive immunity protection test 
of newborn piglets revealed that the recombinant live-
vector vaccine rSPV-SA 100%  protected piglets from 
SPV infection, and no significant clinical symptoms were 
observed in the rSPV-SA treatment group during this 
experiment. The antigen epitope M537KSGYGQPIA547, 
which is located in the TGEV S-A site, has been identi-
fied as a B-cell epitope of TGEV (Gebauer et  al. 1991). 
However, whether this epitope can produce neutralizing 
antibodies remains unclear.

Antigen epitopes on the S1/S2 junction of animal 
CoVs have been shown to stimulate neutralizing anti-
body production. Okda found that the S1/S2 junc-
tion of PEDV is an immunodominant region of S 
protein with strong neutralizing activity (Okda et  al. 
2017; 2007). Previous studies have shown that the 
B-cell epitope Y748SNIGVCK755 on the S1/S2 junc-
tion of PEDV has potential use in vaccine development 

Table 1  Application of animal CoV antigen epitopes

Coronaviruses (protein) Sequence Application References

PEDV (S-COE) Y748SNIGVCK755 Vaccine: production of neutralizing antibody (used 
HBcAg as vector)

Gillam and Zhang 2018

PEDV (S) T592SLLASACTIDLFGYP607 Vaccine: production of neutralizing antibody Sun et al. 2019

FIPV (S) N621NYLTFNKFCLSLSPVGANC640 Vaccine: induce Th1 activity Takano et al. 2014

FIPV (M) V81YGIKMLIMWLLWPIVLALT100 Vaccine: induce Th1 activity Takano et al. 2014

FIPV (N) G81QRKELPERWFFYFLGTGPH100 Vaccine: induce Th1 activity Satoh et al. 2011

IBV (S) S413RIQTATDP421,
517RNATGSQP525,
G45AYAVVNV52,
S413RIQTATQP421

Vaccine: stimulate CD8 + T-cell proliferation and IFN-γ 
secretion

Tan et al. 2016

TGEV (S) TGEV S-A site (533–705) Vaccine: increase the Th1 and Th2 cytokine levels Gebauer et al. 1991

MHV (S: S1/S2 junction) L766TTFEPFTVSIVNDS780 Vaccine: induces CD4 T-cell response in mice Khanolkar et al. 2010

PEDV (S-COE) T592SLLASACTIDLFGYP607 Diagnosis: mABs 4D8F10 and 6F3E3 recognize the 
COE, and highly conserved

Sun et al. 2019

TGEV (S) T592SLLASACTIDLFGYP607 Diagnosis: highly conserved Gebauer et al. 1991

MHV (N) I24LKKTTWADQTERGL38

R357FDSTLPGFETIMKVL372
Diagnosis (ELISA): more sensitive than the commer-
cial tests

Asano et al. 2011

IBV (S) TGEV (S1: 166–247, S1: 501–515, S2: 8–30) Diagnosis (ELISA): more sensitive and specific than 
the commercial tests

Ding et al. 2015
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(Gillam and Zhang 2018). The T-cell epitope 
L766TTFEPFTVSIVNDS780 on the S1/S2 junction of 
MHV efficiently induces CD4 T-cell response in mice 
(Khanolkar et al. 2010). Vautherot found that the B-cell 
epitope T771TGYRFTNFEPFT783, which is on the S1/
S2 junction of BCoV, is a potential immunodominant 
region (Vautherot et  al. 1992). The above studies sug-
gest that these antigen epitopes located on the S1/S2 
junction might be used for developing epitope vaccines.

Application of antigen epitopes in diagnosis
Approaches based on antigen epitopes, which permit a 
high epitope density and careful choice of unique spe-
cific epitopes, have been used in the detection of anti-
bodies against viruses and have achieved both high 
sensitivity and greater specificity in results (Anandarao 
et al. 2006; Gómara et al. 2010; He et al. 2011). Antigen 
epitope-based diagnosis relies on two strategies: one 
uses a highly conserved dominant antigen epitope, and 
the other combines multiple epitopes (Table 1).

The COE epitope T592SLLASACTIDLFGYP607, belong-
ing to the B-cell epitope of PEDV, is highly conserved 
between G1 and G2 PEDV strains. The mAbs 4D8F10 and 
6F3E3 that detect the COE epitope are suitable for PEDV 
by binding to the conserved epitope (Sun et al. 2019). Simi-
larly, the TGEV B-cell epitope T592SLLASACTIDLFGYP607, 
which is highly conserved in coronaviruses, can be used as 
an antigenic peptide for diagnosis (Gebauer et  al. 1991). 
Studies on other coronaviruses indicate that the N protein is 
highly conserved in different strains. Thus, it is widely used 
as a diagnostic antigen for the development of serologic 
diagnostic tools (Abdelwahab et al. 2015; Hou et al. 2007; 
Pradhan et al. 2014; Su et al. 2016). Asano established two 
indirect enzyme-linked immunosorbent assays (ELISAs) 
based on the B-cell epitopes I24LKKTTWADQTERGL38 
and R357FDSTLPGFETIMKVL372, which are located in 
MHV N protein. ELISAs that rely on these peptides are 
more sensitive than the commercial tests used to screen 
laboratory mouse serum for unintended MHV infection 
(Asano et al. 2011). Diagnostic methods based on multiple 
antigens or synthetic peptides exhibit improved sensitivity 
and specificity (Chimeno Zoth and Taboga 2006; Hadifar 
et al. 2014; Shehata et al. 2012; Shenyang et al. 2011). Ding 
developed a multiepitope antigen of S protein (166–247 aa, 
S1 gene; 501–515 aa, S1 gene; 8–30 aa, S2 gene) for use in 
a highly sensitive and specific ELISA for detecting IBV-spe-
cific antibodies in chicken serum samples (Ding et al. 2015).

Prospect
Studies on the antigen epitopes on animal CoV have a 
high research output. However, they are mainly focused 
on IBV, FIPV, MHV, TGEV and PEDV. The relatively 

less harmful or newly emerged BCoV, PDCoV and 
SADS-CoV have not been studied extensively. Cur-
rently, technology for identification B-cell epitopes 
is well established. However, it is difficult to obtain 
high-quality monoclonal antibodies, especially those 
with neutralizing activity that are capable of recogniz-
ing conformational epitopes. For conformational B-cell 
antigen epitope identification, monoclonal antibodies 
recognized by whole viruses are more efficient than 
monoclonal antibodies from recombinant proteins. 
Identification of T-cell epitopes is crucial in the inves-
tigation of cellular immune mechanisms and the devel-
opment of subunit peptide vaccines. Except for FIPV, 
MHV and IBV, few studies on T-cell antigenic epitopes 
of other animal CoVs have been reported. Since T cells 
only recognize antigenic polypeptides presented by 
major histocompatibility complex (MHC) molecules on 
the surface of antigen presenting cells (APCs), identi-
fication of T-cell epitopes is more challenging. Given 
that some coronaviruses, such as FIPV, have ADE 
characteristics, immune responses based on humoral 
immunity may not be suitable for preventing animal 
CoVs. Thus, further research on animal CoV T-cell 
epitopes is needed.

Relative to traditional vaccines, epitope vaccines are 
safer, nontoxic and stable and can more directly elicit 
immune responses against pathogenic microorgan-
isms. However, in coronaviruses, applications of anti-
genic epitopes are poorly studied. Although several 
B- and T-cell epitopes that can induce antiviral immune 
responses have been identified, studies on the applica-
tion of antigenic epitope-based diagnosis and vaccines 
are inadequate, with most having been done in  vitro 
or in nonhost animals without evaluation of immune 
response and protection in susceptible animal hosts. The 
identification of different antigenic epitopes on various 
strains of the same virus limits the application of anti-
genic epitopes. Generally, antigenic epitopes are located 
on the surface of viral proteins with hydrophilicity and 
surface accessibility and are prone to certain mutations 
due to frequent contact with the external environment. 
In particular, coronavirus S proteins are located in the 
outermost layer of the virus and are most susceptible 
to mutation, resulting in poor conservation of S protein 
antigenic epitope. For example, Zhang identified that the 
residues of S protein at position 55–64 were specific for 
the recognition of PEDV classical G1 strains, whereas the 
residues at position 157–164 showed specificity to PEDV 
emerging G2 strains (Zhang et al. 2023). Thus, it is cru-
cial to identify the conserved antigen epitopes, especially 
neutralizing epitopes, between different strains of the 
same coronaviruses.
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Epitope vaccines based on multiepitope peptides can 
overcome the problem of low conservation between 
epitopes from different strains and trigger stronger 
immune responses. However, for animal CoV, the devel-
opment of diagnoses and vaccines based on multiple 
epitopes is inadequate. Since multiepitope vaccines are 
based on different viral epitopes in tandem, they are 
suited for the development of universal vaccines against 
multiple animal CoVs that infect the same host, such 
as TGEV, PEDV, SADS-CoV and PDCoV. For example, 
multiple studies have shown that some people who have 
not been exposed to severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2) have preexisting reactivity 
to SARS-CoV-2 sequences and that preexisting reactiv-
ity to SARS-CoV-2 is mediated by memory T cells (Braun 
et al. 2020; Grifoni et al. 2020; Le Bert et al. 2020). Cross-
reactive T cells have been shown to specifically recog-
nize a SARS-CoV-2 epitope as well as the homologous 
epitope from a common cold coronavirus (e.g., human 
coronavirus-OC43/229E/HL63/HKU1) (Mateus et  al. 
2020). Additionally, epitope vaccines based on B- and 
T-cell epitopes can elicit humoral and cellular immune 
responses, resulting in a stronger antiviral immune 
response, which deserves intensive investigation.

During the virus‒host game, the host produces neutral-
izing antibodies to defend against viral invasion by rec-
ognizing viral antigenic epitopes. Meanwhile, the virus 
achieves immune escape by continuously mutating to 
reduce the neutralizing ability of host antibodies. When 
a virus enters a cell, the host immune system triggers the 
production of neutralizing antibodies that can effectively 
block the virus’s ability to interact with susceptible cell 
receptors, interfere with the fusion of the virus with the 
cell membrane, and form immune complexes that are 
efficiently cleared by the immune system (Murin et  al. 
2019). S protein of SARS-CoV-2 mediates virus entry 
into cells and is the main recognition target of neutral-
izing antibodies. Mutations in individual amino acid sites 
on S protein can cause coronavirus to escape neutralizing 
antibodies. For example, the delta variant of SARS-CoV-2 
has mutations in S protein that result in a sixfold reduc-
tion in the neutralizing ability of serum neutralizing anti-
bodies compared to wild-type SARS-CoV-2 (Zhang et al. 
2021b). Additionally, the clinically approved monoclonal 
antibodies bamlavinimab and imdevimab for the treat-
ment of SARS-CoV-2-associated disease have shown a 
1,000-fold and 50-fold reduction in neutralizing ability 
against the delta variant, respectively (Mlcochova et  al. 
2021). Therefore, identifying key antigenic epitope con-
served regions of coronaviruses, such as the conserved 
receptor binding domain and the S1/S2 junction con-
served region, is crucial for the development of broad-
spectrum neutralizing antibodies against coronaviruses.
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