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Mathematical modeling of trypanosomiasis 
control strategies in communities where human, 
cattle and wildlife interact
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Abstract 

Spillover of trypanosomiasis parasites from wildlife to domestic livestock and humans remains a major challenge 
world over. With the disease targeted for elimination by 2030, assessing the impact of control strategies in communi-
ties where there are human-cattle-wildlife interactions is therefore essential. A compartmental framework incorporat-
ing tsetse flies, humans, cattle, wildlife and various disease control strategies is developed and analyzed. The repro-
duction is derived and its sensitivity to different model parameters is investigated. Meanwhile, the optimal control 
theory is used to identify a combination of control strategies capable of minimizing the infected human and cattle 
population over time at minimal costs of implementation. The results indicates that tsetse fly mortality rate is strongly 
and negatively correlated to the reproduction number. It is also established that tsetse fly feeding rate in strongly 
and positively correlated to the reproduction number. Simulation results indicates that time dependent control strate-
gies can significantly reduce the infections. Overall, the study shows that screening and treatment of humans may 
not lead to disease elimination. Combining this strategy with other strategies such as screening and treatment of cat-
tle and vector control strategies will result in maximum reduction of tsetse fly population and disease elimination.

Keywords  Human African trypanosomiasis, Mathematical model, Intervention strategies, Optimal control theory

AMS Subject Classification:  92B05, 93A30, 93C15

Introduction
Human African trypanosomiasis (HAT), also known as 
sleeping sickness continues to present a major human 
and animal public health challenge in developing coun-
tries such as Republic of Congo and Uganda (Kasozi 
et al. 2021). Worldover, it is estimated that approximately 
70  million people in sub-Saharan Africa are at risk to 
HAT infections (Papagni et  al. 2023). HAT is targeted 

for elimination by 2030 (Pepin 2023). The proclamation 
and desire to eliminate HAT by 2030 was made by the 
World Health Organization (WHO) in 2014 following 
a 73% reduction of HAT cases between 2000 and 2012 
due to the implementation of sustainable control efforts 
(Franco et al. 2022).

As we draw towards 2030, the feasibility of eliminat-
ing HAT remains unclear, particularly in areas where 
inhabitants reside in communities close to game reserves 
(Kasozi et  al. 2021). This is mainly because of cross 
transmission of parasites between livestock and wildlife 
(Kasozi et  al. 2021). Issues of cross-transmission of the 
disease from animals to humans have prompted WHO to 
urge modellers to include animal populations in theoreti-
cal studies aimed at modelling HAT transmission dynam-
ics (World Health Organization 2013, 2020).
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Although there are plenty of mathematical models for 
HAT in literature (see, for example, Artzrouni and Gouteux 
(1996); Stone and Chitnis (2015); Hargrove et  al. (2012); 
Medlock et  al. (2013); Helikumi et  al. (2021); Helikumi 
et al. (2020, 2019, 2020); Ndondo et al. (2016); Gilbert et al. 
(2016); Rock et al. (2015b); Rock et al. (2015a)), the inclu-
sion of wildlife in these studies has largely been ignored. 
As we draw towards 2030, it is imperative to evaluate the 
feasibility of disease elimination based on current disease 
intervention strategies, especially in areas where there are 
human-cattle and wildlife interaction. Motivated by the 
aforementioned facts, in this study, we use a mathemati-
cal model to evaluate the impact of different HAT control 
strategies on minimizing the disease burden in communi-
ties where there are human-cattle and wildlife interactions.

Mathematical models are essential tools that have been 
used to understand the transmission dynamics of HAT 
since the last two decades (for example, Artzrouni and 
Gouteux (1996); Stone and Chitnis (2015); Hargrove et al. 
(2012); Medlock et  al. (2013); Ndondo et  al. (2016); Gil-
bert et al. (2016); Rock et al. (2015b); Rock et al. (2015a)). 
Aforementioned studies and those cited therein produced 
many useful results and improved existing knowledge on 
trypanosomiasis transmission and control. For example., 
Stone and Chitnis (2015) developed a model to explore 
the implications of heterogeneous biting exposure of the 
human population on HAT transmission dynamics. Their 
findings showed that heterogeneous biting exposure in 
the human porpulation has a strong influence on disease 
dynamics. Through a mathematical model, Hargrove et al. 
(2012) demonstrated that treatment of livestck using tryp-
anocides or insecticides could significantly reduce annual 
HAT cases. Medlock et  al. (2013) used a mathematical 
model to evaluate the potential impact of Wolbachia-col-
onized tsetse flies on reducing annual HAT cases.

Despite these efforts, however, several challenges 
remain in the mathematical modeling of HAT. One limi-
tations of the aforementioned studeis the non-inclusion 
of wildlife animals in their frameworks. Modeling stud-
ies that neglect wildlife population may not clearly 
account for HAT dynamics in communities where there 
is human, cattle and wildlife interaction. Implement-
ing disease control strategies in wildlife population is 
known to be challenging. Current HAT control strate-
gies are mainly a combination of active and passive case-
finding, and the treatment of individuals with detected 
infections (Franco et al. 2022). However, it is imperative 
to evaluate the feasibility of disease eradication in such 
communities based on the aforementioned intervention 
strategies. To evaluate the strength of the intervention 
strategies to control the disease, we consider time and 
non-time dependent control efforts. For time dependent 
controls, optimal control theory is utilized to formulate 

an optimal control problem in which the intervention 
efforts are optimized to minimize the number of infected 
humans and cattle at minimal costs of implementa-
tion. In the last two decades, optimal control theory has 
proved to be an essential tool that can be used to identify 
the best strategies for the control of infectious diseases.

The outline of the paper is as follows: in the next section, 
we present the methods and analytical results. In particu-
lar, we present the proposed model and perform dynamical 
analysis and present the proposed optimal control problem. 
The Methods, results and discussions section is followed by 
numerical simulations and discussions. The paper rounds 
up with a discussion of results and future outlook.

Methods, results and discussions
In this section, a mathematical model  is presented 
to study the transmission of trypanosomiasis among 
humans, cattle, wildlife and tsetse flies, based on Ordi-
nary differential equations (ODE).

Model formulation
We propose a deterministic model that incorporates 
the interplay of tsetse flies and multiple hosts-humans, 
cattle and wildlife. Throughout the study, we will use 
the subscript h, c and w to represent the human, cattle 
and wildlife populations. Let the variables, Sj(t), Ej(t) , 
Ij(t) and Rj(t), j = c, h,w, represent the number of sus-
ceptible, exposed, infectious and recovered host at time 
t,   such that the total population of each host is equiva-
lent to Nj (t) = Sj(t)+ Ej(t)+ Ij(t)+ Rj(t). The vec-
tor population is divided into three classes such that at 
time t, there are susceptible Sv(t) , exposed Ev(t) , and 
infected Iv(t) vectors. Thus, the total vector population 
is Nv(t) = Sv(t)+ Ev(t)+ Iv(t). We assume that suscep-
tible hosts contact the disease upon being bitten by an 
infectious vector. Similarly, susceptible vectors become 
infected when they bite an infectious host. Hence, in this 
model, we consider the following forces of infection �c(t) , 
�w(t), �h(t) and �v(t) for cattle, wildlife, human and vec-
tor populations, respectively,:

In (1), pj , j = c, h,w correspond to the proportion of 
bloods meals on j host, such that j=c,h,w pj = 1 , a is the 
vector biting rate, u is the probability of disease transmis-
sion from an infectious vector to a susceptible host (cattle 
and wildlife) given that a contact between the two occurs 
and b is the probability of transmission of infection 
from an infectious vector to a susceptible human given 
that a contact between the two occurs. Similarly, c and 
v accounts for the probability that a susceptible vector 

(1)

�c = pcau
Iv
Nc

, �w = pwau
Iv
Nw

, �h = phab
Iv
Nh

,

[10pt]�v = phac
Ih
Nh

+ pcav
Ih
Nc

+ pwav
Iw
Nw

.

}
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becomes infected following a blood meal from an infec-
tious human and cattle, respectively.

Upon infection, the susceptible hosts progress to the 
exposed state where they remain for an average period of 
q−1
j  days, after which they progress to the infectious state 

(stage 1 of the disease) where they remain for an average 
period of γ−1

j  days. Untreated hosts progress to stage II. 
Infected animals in stage II are non-infectious (Ndondo 
et al. 2016). Stage II infected animals recover with tempo-
rary immunity, which wanes out after κ−1

j  days.
Similarly, upon infection vectors progress to the 

exposed state where they incubate the disease. The incu-
bation period lasts q−1

v  days and there after they become 
infectious for their entire life span µ−1

v  days. Natural 
mortality rate is assumed to be constant in all epidemio-
logical classes for both the hosts and vectors. Mortality 
in humans, wildlife and cattle is modeled by bh , bw and 
bc, respectively. Furthermore, let bhNh , bwNw , bcNc and 
bvNv , represent the recruitment rate into the human, 
wildlife, cattle and vector birth rate, respectively. All new 
recruits are assumed to be susceptible to infection.

Based on these assumptions, we summarize the trans-
mission dynamics of the disease by a system of ordinary 
differential equations (ODEs) (2)-(16) while the model 
transmission diagram is depicted in Fig. 1:

(2)S′h(t) =bhNh − phab
Iv

Nh
Sh − bhSh + κhRh,

(3)E′
h(t) =phab

Iv

Nh
Sh − (bh + qh)Eh,

(4)I ′h(t) =qhEh − (bh + γh)Ih,

(5)R′
h(t) =γhIh − (bh + κh)Rh,

(6)S′c(t) =bcNc − pcau
Iv

Nc
Sc − bcSc + κcRc,

(7)E′
c(t) =pcau

Iv

Nc
Sc − (bc + qc)Ec,

(8)I ′c(t) =qcEc − (bc + γc)Ic,

(9)R′
c(t) =γcIc − (bc + κc)Rc,

(10)S′w(t) =bwNw − pwau
Iv

Nw
Sw − bwSw + κwRw ,

Fig. 1  Model flow diagram summarizing the dynamics of HAT infection presented in system (2)- (16)
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All variables and model parameters of system (2)-(16) 
are considered to be positive and it can easily be estab-
lished that the model is epidemiologically and mathemat-
ically well-posed in the domain (17):

One can easily verify that this region, � is positively 
invariant with respect to system (2)-(16). Thus we will 
study the dynamics of our model in the closed set �. 
Based on (17), we one can simplify the analysis of model 
(1) by considering a dimensionless model since the total 
population is constant. Let;

By direct calculation, one can easily verify that the 
dimensionless form of system (2)-(16) is equivalent to (19):

(11)E′
w(t) =pwau

Iv

Nw
Sw − (bw + qw)Ew ,

(12)I ′w(t) =qwEw − (bw + γw)Iw ,

(13)R′
w(t) =γwIw − (bw + κw)Rw ,

(14)S′v(t) =bvNv − phac
Ih

Nh
Sv − pcav

Ic

Nc
Sv − pwav

Iw

Nw
Sv − bvSv ,

(15)E′
v(t) =phac

Ih

Nh
Sv + pcav

Ih

Nc
Sv + pwav

Iw

Nw
Sv − (bv + qv)Ev ,

(16)I ′v(t) =qvEv − bvIv .

(17)� =

{

Nk(t) ≤ Nk

}

, for, k = h, c,w, v.

(18)sk =
Sk

Nk
, ek =

Ek

Nk
, ik =

Ik

Nk
, rj =

Rj

Nj
, θvh =

Nv

Nh
, θvc =

Nv

Nc
, and θvw =

Nv

Nw
.

(19)

s′h(t) = bh − phabθvhivsh − bhsh + κhrh,

e′h(t) = phθvhabivsh − (bh + qh)eh,

i′h(t) = qheh − (bh + γh)ih,

r′h(t) = γhih − (bh + κh)rh,

s′c(t) = bc − pcauθvcivsc − bcsc + κcrc ,

e′c(t) = pcauθvcivsc − (bc + qc)ec ,

i′c(t) = qcec − (bc + γc)ic ,

r′c(t) = γcic − (bc + κc)rc ,

s′w(t) = bw − pwauθvwivsw − bwsw + κwrw ,

e′w(t) = pwauθvwivsw − (bw + qw)ew ,

i′w(t) = qwew − (bw + γw)iw ,

r′w(t) = γwiw − (bw + κw)rw ,

s′v(t) = bv − phacihsv − pcavicsv − pwaviwsv − bvsv ,

e′v(t) = phacihsv + pcavicsv + pwaviwsv − (bv + qv)ev ,

i′v(t) = qvev − bviv .
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It can easily establish that model (19) is epidemiologi-
cally and mathematically well-posed in the domain:

Further, direct calculations show that system (19) has a 
disease-free equilibrium (DFE) given by (21):

In Eq. (21), we can observe that the total human, cattle, 
wild and vector populations are susceptible to the disease.

Disease transmission potential
The basic reproduction number R0 remains one of the 
integral threshold quantities in disease modeling. It dem-
onstrates the disease transmission potential. In vector 
borne disease models, R0 represents the average number 
of secondary infections that single host can generate in a 
totally susceptible population of hosts and vectors. To 
compute the basic reproduction number associated with 
model (19) we will use the next generation matrix method 
presented in Van  den  Driessche and Watmough (2002). 
Let, the nonnegative matrix F  represent the generation of 
new infection terms and the non-singular matrix V be the 
remaining transfer terms evaluated at DFE., that is.,:

(20)

� =











sj , ej , ij , rj

sv , ev , iv



 ∈ R
15
+

�

�

�

�

�

�

0 ≤ sj + ej + ij + rj ≤ 1,

0 ≤ sv + ev + iv ≤ 1.







, for j = c, h,w.

(21)

E
0
=

(

s
0
h
, e

0
h
, i
0
h
, r

0
h
, s

0
c , e

0
c , i

0
c , r

0
c , s

0
w , e

0
w , i

0
w , r

0
w , s

0
v , e

0
v , i

0
v

)

=

(

1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0

)

.

(22)

F =




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
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









0 0 0 0 0 0 0 phθvhab
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 pwauθvw
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 pwauθvw
0 0 0 0 0 0 0 0
0 phac 0 pcav 0 pwav 0 0
0 0 0 0 0 0 0 0
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,

V =








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





q̃h 0 0 0 0 0 0 0
−qh γ̃h 0 0 0 0 0 0
0 0 q̃c 0 0 0 0 0
0 0 − qc γ̃c 0 0 0 0
0 0 0 0 q̃w 0 0 0
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with;

It follows from (22) that the next-generation matrix of 
system (19) is (23):

To determine the role of different hosts in maintaining 
transmission, we analyse the host-specific type-repro-
duction numbers. They are obtained from the spectral 
radii of the next-generation matrices with or without 
one or more host types (Roberts and Heesterbeek 2003). 
With regard to trypanosomiasis, human infection is 
regarded as accidental, hence we can explore the dynam-
ics of model (22) in the absence and presence of human 
host. Hence, we considered the follow cases: 

(a)	� No human host, then the spectral radii of model 
(19) becomes (24): 

 From (24) we have (25): 

 where R0c and R0w represents the expected number of 
cattle and wildlife infections, respectively, occurring via 
implicit stepping stones of infected vectors from a single 
infected host. In the absence of human host, pc + pw = 1. 
Further, θvc and θvw denotes the ratio of vectors to cattle 
and wildlife, respectively, qc/(bc + qc) is the probability of 
an infected cattle surviving the latent stage and becom-
ing infectious for an average period of 1/(bc + γc). Simi-
larly, 1/(bw + qw) is the probability of an infected wildlife 
surviving the exposed stage and becoming infectious for 
an average period of 1/(bw + γw). Infected vectors, have 
a probability qv/(bv + qv) of surviving the latent stage to 
become infectious for their entire lifespan of 1/bv days.
(b)	� When humans and other hosts coexist, the spectral 

q̃h =bh + qh , γ̃h = bh + γh , q̃c = bc + qc , γ̃c = bc + γc ,

q̃w =bw + qw , γ̃w = bw + γw , q̃v = bv + qv .

(23)

K = FV
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


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phθvhab
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0 0 0 0 0 0
pwauθvw
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0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 pwauθvw

0 0 0 0 0 0 0 0

phacqh
q̃h γ̃h

phac
γ̃h

pcavqc
q̃c γ̃c
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γ̃c

pwavqw
q̃w γ̃w

pwavqw
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(24)R0cw =

√

p2c a
2uvθvc

bv(bc + γc)

qv

(bv + qv)

qc

(bc + qc)
+

p2wa
2uvθvw

bv(bw + γw)

qv

(bv + qv)

qw

(bw + qw)
.

(25)R2
0cw =

(

p2c a
2uvθvc

bv(bc + γc)

qv

(bv + qv)

qc

(bc + qc)

)

+

(

p2wa
2uvθvw

bv(bw + γw)

qv

(bv + qv)

qw

(bw + qw)

)

=R0c +R0cw ,

radii of model (19) is (26): 

 Eqn. (26) can also be written as (27): 

 where, R0h is the average number of secondary human 
infections generated by one infectious tsetse fly introduced 
in a population wholly of susceptible humans, θvh is the 
ratio of vectors to humans, qh/(bh + qh) is the probabil-
ity of an infected human to survive the exposed stage and 
become infectious for an average period of 1/(bh + γh).

Sensitivity analysis
To investigate the relationship between the reproduction 
number and model parameters, we wil perform sensiv-
ity analysis using the partial rank correlation coefficients 
(PRCC) approach presented in Marino et al. (2008) and 
the results are in Fig. 2. Baseline values for model param-
eters utilized in this study were taken from published lit-
erature and presented in Table 1. Since model parameters 
have plausible range of values performing global sensitiv-
ity analysis enables us to understand which combinations 
of parameters maximize disease transmission potential.

The output in Fig.  2 shows that increasing the vector 
mortality rate strongly reduces the disease transmis-
sion potential. One can also note that reducing the aver-
age infectious period of the hosts ( γi , j = h, c,w ) has the 
potential to reduce the disease transmission potential. 
Hence, it can be concluded that control measures such as 
vector control, screening and treatment of humans and 
cattle may strongly reduce disease transmission poten-
tial. However, the output also shows that an increase in 
vector feeding rate, disease transmission probabilities 
and the ratios of vector to host have significant influence 
on increasing the disease transmission potential. Hence, 
minimizing vector-host contact where possible could sig-
nificantly reduce disease transmission potential.

(26)R0 =

√

p2ha
2bcθvh

bv γ̃h

qv

q̃v

qh

q̃h
+

p2c a
2uvθvc

bv γ̃c

qv

q̃v

qc

q̃c
+

p2wa
2uvθvw

bv γ̃w

qv

q̃v

qw

q̃w
.

(27)

R
2
0cw =

(

p2ha
2bcθvh

bv γ̃h

qv

q̃v

qh

q̃h

)

+

(

p2c a
2uvθvc

bv γ̃c

qv

q̃v

qc

q̃c

)

+

(

p2wa
2uvθvw

bv γ̃w

qv

q̃v

qw

q̃w

)

=R0c +R0cw ,
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Fig. 2  Simulation results on sensitivity analysis of R0 with respect to key model parameters

Table 1  Model parameters and their biological definitions

Biological definition Symbol Units Baseline value Source

Mortality rate for humans bh 1
50×365

Day−1s Ndondo et al. 2016

Cattle mortality rate bc 1
10×365

Day−1 Ndondo et al. 2016

Wildlife mortality rate bw 1
15×365

Day−1 Ndondo et al. 2016

Tsetse fly mortality rate bv 1
30
( 1
33

− 1
30
) Day−1 Ndondo et al. 2016

Ratio of tsetse flies to humans θvh 3(1− 10) Dimensionless Assumed

Ratio of tsetse flies to cattle θvc 8(1− 10) Dimensionless Assumed

Ratio of tsetse flies to wildlife θvw 10(1− 15) Dimensionless Assumed

Incubation rate of vectors qv 1
25
( 1
30

− 1
25
) Day−1 Ndondo et al. 2016

Incubation rate of humans, cattle, wildlife qh , qc , qw 1
12
( 1
14

− 1
10
) Day−1 Ndondo et al. 2016

Vector biting rate a 1
3
( 1
10

− 1
3
) Day−1 Ndondo et al. 2016

Proportion of blood-meal on human ph 0.09 Dimensionless Rock et al. 2015b

Proportion of blood-meal on cattle, wildlife pc , pw Varied (0-1) Dimensionless

Probability that an infectious fly infects a human, cattle,wildlife b, u 0.62(0− 1) Dimensionless Ndondo et al. 2016

Probability that a fly becomes infected after biting an infectious human, cattle, wildlife c, v 0.01(0− 1) Dimensionless Ndondo et al. 2016

Rate of progression from stage I to stage II for humans γh 1
30

Day−1 Ndondo et al. 2016

Rate of progression from stage I to stage II for cattle γc 1
25

Day−1 Ndondo et al. 2016

Rate of progression from stage I to stage II for wildlife γw 1
25

Day−1 Ndondo et al. 2016

Rate of progression from stage II to recovery and loss of temporary immunity for untreated humans κh 1
90

Day−1 Ndondo et al. 2016

Rate of progression from stage II to recovery and loss of temporary immunity for untreated cattle, wildlife κc , κw 1
75

Day−1 Ndondo et al. 2016
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Figure  3 shows the effects that varying two sample 
parameters will yield on R0. If tsetse fly mortality is suf-
ficiently high, then disease transmission potential reduces 
significantly. In contrast, if tsetse fly feeding rate is suffi-
ciently high, then disease transmission potential increases.

Stability analysis of the model steady states
In epidemiological models, it is essential to investigate the 
global stability of the model steady states, so that one can 
understand the evolution of the disease over time. As high-
lighted earlier, in the absence of the disease, model (19) 
admits a disease-free equilibrium, defined by Eq. (21). In 
what follows, we now investigate the global stability of the 
disease-free equilibrium. We now claim the following result.

Theorem 1  If R0 < 1, the disease-free equilibrium point 
is globally asymptotically stable, otherwise it is unstable.

Proof
Let Y(t) = (eh, ih, ec, ic, ew , iw , ev , iv)

T . From (19), by con-
sidering infected populations only, that is (36):

(28)e′h(t) =phθvhabivsh − (bh + qh)eh,

(29)i′h(t) =qheh − (bh + γh)ih,

(30)e′c(t) =pcauθvcivsc − (bc + qc)ec,

(31)i′c(t) =qcec − (bc + γc)ic,

(32)e′w(t) =pwauθvwivsw − (bw + qw)ew ,

(33)i′w(t) =qwew − (bw + γw)iw ,

(34)r′w(t) =γwiw − (bw + κw)rw ,

System (28)-(36), can be written in the compact form 
(37):

where F  and V are defined in (22). It follows from the 
Peron-Frobenius theorem that V−1F  has a positive left 
eigenvector v associated with R0, that is: vV−1F = R0v. 
Since vV−1 is a positive vector, we propose the following 
Lyapunov function L = vV−1Y . Taking, the fractional 
derivative of L along the solutions of system (19) one gets 
(38):

It can easily be verified that the largest invariant subset 
of Ŵ where L′(t) = 0 is the singleton {E0} . Therefore, by 
LaSalle’s invariance principle (LaSalle 1976), E0 is glob-
ally asymptotically stable in Ŵ when R0 ≤ 1 . This com-
pletes the proof. �

If R0 > 1, then by continuity, L̇ > 0 in a neighborhood 
of E0 in Ŵ̊ . Solutions in Ŵ̊ sufficiently close to E0 move 
away from the DFE, implying that the DFE is unstable. 
Using a uniform persistence result from Freedman et al. 
(1994) and an argument as in the proof of Proposition 3.3 
of Li et al. (1999), it can be shown that when R0 > 1 , the 
instability of the DFE implies the uniform persistence of 
the model (19). Uniform persistence implies that there 
exists an endemic equilibrium point. To study the global 
stability of the endemic equilibrium point, we shall con-
sider a case κj = 0 as in Ndondo et al. (2016). This implies 
that r∗k = γk i

∗
k/bk . Based on this assertion, it implies that 

one can drop the variables rk from further considera-
tion. We now turn our attention to investigate the global 

(35)
e′v(t) =phacihsv + pcavicsv + pwaviwsv − (bv + qv)ev ,

(36)i′v(t) =qvev − bviv .

(37)Y ′(t) ≤ (F − V)Y(t),

(38)
L′(t) =vV−1Y ′(t) ≤ vV−1(F − V)Y(t)

=(R0 − 1)vY ≤ 0, if R0 ≤ 1.

Fig. 3  Monte Carlo simulations of 1000 sample values for two illustrative parameters (tsetse fly mortality rate and tsetse fly feeding rate) chosen 
via Latin Hypercube Sampling
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stability of the endemic equilibrium based on the afore-
mentioned conditions. We begin by claiming the follow-
ing result.

Theorem 2  If R0 > 1, and κk = 0 , for k = h, c,w , then 
there exists an endemic equilibrium point which is glob-
ally asymptotically stable.

Proof
To investigate global stability of the endemic equilibrium, 
we consider the following Lyapunov function (39):

By taking the fractional derivative of U(t) along the solu-
tions of model (19) leads to (40):

At endemic equilibrium we have the following identities (41):

After some algebraic manipulations one gets

(39)
U(t) =

∑

j=h,c,w,v

[(

sj − s∗j − s∗j ln
sj

s∗j

)

+

(

ej − e∗j − e∗j ln
ej

e∗j

)

+
q̃j

qj

(

ij − i∗j − i∗j ln
ij

i∗j

)]

.

(40)U ′(t) ≤
∑

j=h,c,w,v

[(

1−
s∗j

sj

)

D
q
t0
sj +

(

1−
e∗j

ej

)

D
q
t0
ej +

q̃j

qj

(

1−
i∗j

ij

)

D
q
t0
ij

]

.

(41)

bh = (1− pc − pw)abθvhi
∗
v s

∗
h + bhs

∗
h, q̃he

∗
h = (1− pc − pw)θvhabi

∗
v s

∗
h,

qhe
∗
h = γ̃hi

∗
h, bc = pcauθvci

∗
v s

∗
c + bcs

∗
c , q̃ce

∗
c = pcauθvci

∗
v s

∗
c , qce

∗
c = γ̃ci

∗
c ,

bw = pwauθvwi
∗
v s

∗
w + bws

∗
w , q̃we

∗
w = pwauθvwi

∗
v s

∗
w , qwe

∗
w = γ̃wi

∗
w ,

bv = (1− pc − pw)aci
∗
hs

∗
v − pcavi

∗
c s

∗
v + pwavi

∗
ws

∗
v + bvs

∗
v ,

q̃vE
∗
v = (1− pc − pw)aci

∗
hs

∗
v + pcavi

∗
c s

∗
v + pwavi

∗
ws

∗
v , qve

∗
v = bvI

∗
v .



















(42)

U ′(t) ≤

(

2−
sh

s∗h
−

s∗h
sh

)

+

(

2−
sc

s∗c
−

s∗c
sc

)

+

(

2−
sv

s∗v
−

s∗v
sv

)

+

(

2−
sw

s∗w
−

s∗w
sw

)

+ (1− pc − pw)abθvhi
∗
v s

∗
h

(

3−
s∗h
sh

−
she

∗
hiv

s∗hehi
∗
v

+
iv

i∗v
−

ih

i∗h
−

ehi
∗
h

e∗hih

)

+ (1− pc − pw)aci
∗
hs

∗
v

(

3−
s∗v
sv

−
sve

∗
v ih

s∗v evi
∗
h

−
evi

∗
v

e∗v iv
−

iv

i∗v
+

ih

i∗h

)

+ pcauθvci
∗
v s

∗
c

(

3−
s∗c
sc

−
sce

∗
c iv

s∗c eci
∗
v

+
iv

i∗v
−

ic

i∗c
−

eci
∗
c

e∗c ic

)

+ pcavi
∗
c s

∗
v

(

3−
s∗v
sv

−
sve

∗
v ic

s∗v evi
∗
c

−
evi

∗
v

e∗v iv
−

iv

i∗v
+

ic

i∗c

)

+ pwauθvwi
∗
v s

∗
w

(

3−
s∗w
sw

−
swe

∗
wiv

s∗wewi
∗
v

+
iv

i∗v
−

iw

i∗w
−

ewi
∗
w

e∗wiw

)

+ pwavi
∗
ws

∗
v

(

3−
s∗v
sv

−
sve

∗
v iw

s∗v evi
∗
w

−
evi

∗
v

e∗v iv
−

iv

i∗v
+

iw

i∗w

)

.

From (42) it follows that, if sj = s∗j  , ej = e∗h , ij = i∗j  
and rk = r∗k , for j = c, h,w, v and k = c, h,w, we have 
U ′(t) = 0. Since the arithmetic mean is greater or equal 
to the geometric mean, that is (43):

In addition, we know that �(x) = 1− x + ln x , x > 0 . 
Note that the function �(x) is non positive for x > 0 and 
�(x) = 0 if and only if x = 0 . Based on the properties of 
�(x) one can easily verify that the terms in the remain 
brackets are less or equal to zero, therefore one can con-
clude that U ′(t) ≤ 0. This completes the proof. �

Effects of vector’s host preference on disease dynamics
Prior studies on HAT suggest that vectors prefer animal 
blood meal and humans are bitten accidentally. This 
phenomena is known as host preference. it is worth 

(43)
s∗j

sj
+

sj

s∗j
≥ 2

√

√

√

√

s∗j

sj
·
sj

s∗j
.
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to investigate the effects of host preference on disease 
dynamics. To accomplish this task we simulated model 
(19) using parameter values in Table  1 together with 
the following assumed initial conditions: sh = 0.9995 , 
eh = 0 , rh = 0 , ih = sh − eh − rh , sc = 0.9970 , ec = 0 , 
rc = 0 , ic = sc − ec − rc , sw = 0.98 , ew = 0 , rw = 0 , 
iw = sw − ew − rw . We simulated solutions for the vari-
ables eh and ih with the proportion of blood meal taken 
by tsetse fly on humans ph fixed to 0.1 while varying 
pc and pw , such that pc + pw = 1− ph. The output is 
shown in Fig. 4. The results indicates that if the propor-
tion of blood feeding on humans and cattle is around 
10% and the rest occurs in wildlife, then the number of 
people infected over time will be higher compared to 
a scenario when proportion of blood meal taken from 
cattle is 30%. For pc = ph = 0.1 , we found R0 = 3.0217 
and for pc = 0.1, ph = 0.3 , R0 = 2.4612. Thus, the avail-
ability of wildlife as reservoirs and taking more bites 
than other hosts have a strong impact on the persis-
tence and extinction of the disease.

Control of tsetse flies and treatment of humans and cattle
The sensitivity analysis results in Fig.  2 indicates that 
increasing the tsetse fly mortality rate and exit rates of 
the hosts from the infectious stage ( γj , j = c, h,w ) may 
significantly reduce the disease transmission potential. 
Hence, it is imperative to investigate their influence on 
disease dynamics. Although the screening and treat-
ment of wildlife is impractical, humans and cattle can be 
screened and treated. The mortality rate of tsetse flies can 
also be enhanced insecticide use. To evaluate the effects 
of these strategies, we redefine that rate at which humans 
and cattle progress from stage 1 to recovered state. Artz-
rouni and Gouteux (1996) proposed that the rate of 
exit of infected hosts to the recovery stage can be mod-
elled as a composite of the intrinsic underlying disease 

progression (say, γ h
int) and the removal rate by treatment 

(extrinsic , say γ h
ext ), that is (44):

then, the monthly percent detection is given by (45):

Consequently, the exit rate from the infected class for the 
human host is given by (46):

From (46) one can observe that linear screening and 
treatment of infected host is not linearly related to γh. Rock 
et al. (2015a) opines that modelling recovery rate using this 
approach allows an extensive analysis of the reproductive 
number. Similarly, the modified exit rate of cattle is given 
by (47):

where Cc is the monthly percent detection of cattle and is 
given by (48):

Furthermore, we model the tsetse fly mortality rate as 
follows (49):

where bv,int represents natural mortality of tsetse flies 
and and bv,ext accounts for additional death rate which 
may occur as a result of control strategies. Thus, the 
total mortality rate of vectors due to ‘natural’ and control 
measures is given by (50):

(44)γh = γ h
int + γ h

ext,

(45)Ch = 100[1− exp(−30γ h
ext)],

(46)γh = γ h
int −

1

30
ln

(

1−
Ch

100

)

.

(47)γc = γ c
int −

1

30
ln

(

1−
Cc

100

)

,

(48)Cc = 100[1− exp(−30γ c
ext)].

(49)bv = bv,int + bv,ext,

Fig. 4  The relationship between host selection and disease dynamics in human population over time, with pw = 1− pc − ph
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with Cv representing daily percentage of tsetse killed and 
is given by (51):

Simulation results in Fig. 5 shows the effects of screen-
ing and treatment of humans and cattle on disease 
dynamics over time, in the absence of insecticide use. 
The results indicates that increasing monthly detection 
and treatment of humans may significantly reduce the 
number of infectious humans and cattle over time and 
will have a slight impact of reducing the proportion of of 
infectious wildlife. One can also observe that detection 
as high as 80% may not sufficiently lead to disease eradi-
cation. Thus elimination of hat by focusing on screening 
and treatment of humans and cattle may not be sufficient 
for the disease to become extinct. However, in Fig. 6, one 
can observe that when insecticides are in use, killing 5% 
of tsetse flies everyday coupled with detection and treat-
ment of humans and cattle at 2.5% success rate each, then 

(50)bv = bv,int − ln

(

1−
Cv

100

)

,

(51)Cv = 100[1− exp(−30µv,ext)].

the disease may become extinct in the community in a 
period less than 300 days.

The optimal control problem
Since HAT is prevalent in resource limited settings, 
it is crucial to desgn control strategies that are cost 
effective, i.e. that allow minimization of infected pop-
ulation at minimal costs of implementing the efforts. 
While disease control strategies to mitigate the spread 
of HAT in humans and domestic animals are available 
and feasible to implement the same cannot be said with 
regards to wildlife due to their large population and 
mobility. Since tsetse flies are more often found in the 
forests, reducing their population requires aerial spray-
ing. Due to environmental effects associated aerial 
spraying this approach is no longer recommended. Fur-
thermore, aerial spraying is also associated with higher 
costs compared to screening and treatment of humans 
and animals (Okello et al. 2021). Hence in this section 
we will consider intervention strategies that are appli-
cable to humans and cattle. Thus we seek to develop 
an optimal control problem and identify an integrated 

Fig. 5  Effects varying intervention strategies on disease dynamics in human population over time, Cv representing daily percentage of tsetse killed, 
Ch denotes the monthly percent detection of infected humans and Cc denotes the monthly percent detection of infected cattle
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control strategy capable of minimizing the number of 
infected humans and cattle over time at minimal costs.

We therefore transform model (19) into an opti-
mal control problem by incorporating time depend-
ent screening and treatment of infectious humans and 
cattle, modeled by uh(t) and uc(t), respectively. Math-
ematically, the objective functional to be minimized is 
defined as:

where the Bh and Bc represent, respectively, the weight 
constants of infectious human and cattle populations; C1 
and C2 are balancing coefficients transforming the inte-
gral into cost expended over a finite time period of T time 
units. Note that C1u

2
h(t) and C2u

2
c (t) describe the total 

costs associated with human and cattle treatment respec-
tively. Note that we have proposed an objective function 
with quadratic controls since a quadratic structure in the 
control has mathematical advantages. This implies that 

(52)J

(

γh(t), γc(t)

)

=

∫

T

0

(

Bhih(t)+ Bcic(t)+ C1u
2
h
(t)+ C2u

2
c (t)

)

dt,

the Hamiltonian attains its minimum over the control set 
at a unique point.

The weights, constant over the prescribed time frame, 
are a measure of the relative costs of the interventions 
over a finite time horizon. The optimal control problem 
hence becomes that we seek optimal functions, u∗h(t) and 
uc(t) , such that:

subject to the state equations in system (16) with initial 
conditions.

The existence of optimal control follows from stand-
ard results in optimal control theory in Lenhart and 
Workman (2007). The necessary conditions that optimal 
controls must satisfy are derived using Pontryagin’s Max-
imum Principle (Pontryagin et  al. 1962). Thus, system 
(19), with uh(t) and uc(t) , is converted into an equivalent 
problem, namely the problem of minimizing the Hamil-
tonian H(t) given by (54):

(53)J
(

u∗h(t),u
∗
c (t)

)

= min J
(

uc(t),uh(t)
)

Fig. 6  Effects varying intervention strategies on disease dynamics in human population over time, Cv representing daily percentage of tsetse killed, 
Ch denotes the monthly percent detection of infected humans and Cc denotes the monthly percent detection of infected cattle
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where gi , i = 1, · · · , 15 denote the right hand side of 
system (19), which is the ith state variable equation, �i , 
i = 1, · · · , 15, are called adjoint variables satisfying the 
following costate equations, with the terminal condition 

�T = 0 , for i = 1, · · · , 15 . From this Hamiltonian and 
Pontryagin’s Maximum Principle (Pontryagin et al. 1962), 
one can demonstrate that given an optimal control pair 
(u∗h, u

∗
c ) and solutions (s∗j , e

∗
j , i

∗
j , r

∗
k ) , with j = c, h,w, v 

and k = c, h,w of the corresponding states system (19) 
there exist adjoint functions �i(t) , satisfying equations 
(55)-(69):

(54)H(t) = Bhih(t)+ Bcic(t)+ C1u
2
h(t)+ C2u

2
c (t)+

15
∑

i=1

�i(t)gi ,

(55)�
′
1(t) =bh�1 − phabθvhiv(�2 − �1), ,

(56)�
′
2(t) =bh�2 − qh(�3 − �2),

(57)�
′
3(t) =− B1 + bh�3 − (γh + uh(t))(�4 − �3)− phacsv(�14 − �13),

(58)�
′
4(t) =bh�4 − κh(�1 − �4),

(59)�
′
5(t) =bc�5 − pcauθvciv(�6 − �5),

(60)�
′
6(t) =bc�6 − qc(�7 − �6),

(61)�
′
7(t) =− B2 + bc�7 − (γc + uc(t))(�8 − �7)− pcavsv(�14 − �13),

(62)�
′
8(t) =bc�8 − κc(�5 − �8),

(63)�
′
9(t) =bw�9 − pwauθvwiv(�10 − �9),

(64)�
′
10(t) =bw�10 − qw(�11 − �10),

(65)�
′
11(t) =bw�11 − γw(�12 − �11)− pwavsv(�14 − �13),

(66)�
′
12(t) =bw�12 − κw(�9 − �12),

(67)

�
′
13(t) = bv�13 − phac(�14 − �13)ih − pcav(�14 − �13)ic

− pwav(�14 − �13)iw ,

(68)�
′
14(t) =bv�14 − qv(�15 − �14),

with transversality conditions �j(T ) = 0 for j = 1, ..., 15 . 
Furthermore, the optimal controls are characterized by 
the optimality conditions (70):

Optimal control results
The results in the preceding section demonstrated 
that the constant detection and treatment of humans 
and cattle alone may not be sufficient to eradicate that 
disease when wildlife are also reservoirs. Hence it is 
imperative to explore how time dependent screening 
and treatment of humans and cattle may alter the dis-
ease dynamics over time. To investigate the impact of 
time-dependent screening and detection of humans 
and cattle, we transformed model (19) into an optimal 
control problem with an objective function given by Eq. 
(52). Further, we assume that screening and treatment 
of humans is given more preference compared to that 
of cattle , thus we set Bh > 2Bc. As a result, the values 
of C1 and C2 represent the relative costs of their respec-
tive controls. We further assume that the screening and 
treatment of humans incurs higher costs than those for 
the decontamination so that C1 > C2 . In addition, we 
have set the upper bounds of our controls to 0.6 since it 
is highly unlikely for any any control effort to be imple-
mented at 100%.

The simulation results in Fig.  7 show the impact of 
time-dependent screening and treatment of humans 
on disease dynamics of over time. Overall, the output 
shows that time dependent controls have the potential to 
reduce the disease prevalence to low levels over time. In 
particular, we can observe the population of infectious 
humans and cattle will be reduced to values close to 
zero. In addition, we can also note that this intervention 
strategy will also reduce exposed and infectious popula-
tion in wildlife.

Figure  8 shows the associated control profiles with 
the output in Fig. 4, one can observe that all the control 
profiles starts at their respective maximum and remain 
there for a long period of time. Precisely, the control 
profile for control uc(t) starts at its maximum and stays 
remains there for the entire time horizon. The control 
profile for uh(t) starts at its maximum and remains there 
for approximately 550 days from the start, then it drops 

(69)

�
′
15(t) =bv�15 − phabθvh(�2 − �1)sh − pcauθvc(�6 − �5)sc

− pwauθvw(�10 − �9)sw ,

(70)uh(t) = min

{

1,max

(

(�3 − �4)ih

2C1

, 0

)}

, and, uc(t) = min

{

1,max

(

(�7 − �8)ic

2C2

, 0

)}

.
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to its minimum. From these results, it can be concluded 
that to attain the desired results (presented in Fig. 7), all 
control efforts needs to be maintained at their respective 

maximum for the entire time horizon. However, the 
screening and treatment of humans may be reduced after 
550 days of implementation.

Fig. 7  Proportions of exposed and infectious host population over time, with ph = 0.1, pc = 0.2 , Bc = 1, C1 = 10−3 and C2 = 10−4

Fig. 8  Control profiles for the optimal control problem, with ph = 0.1, pc = 0.2 , Bc = 1, C1 = 10−3 and C2 = 10−4

Fig. 9  Control profiles for the optimal control problem, with ph = 0.1, pc = 0.2 , Bc = 1, and C1 = C2 = 10−6
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To investigate the impact of the costs on the imple-
mentation of control strategies, we also varied the values 
of the cost parameters ( C1 and C2 ) and the results are in 
Fig.  9. Here, we set C1 = C2 = 10−6 , implying that the 
costs are low as compared to those considered earlier 
(Fig.  8). The results show that when the costs of imple-
mentation are low both control efforts can be maintained 
at their respective maxima for the entire horizon.

Concluding remarks
In this paper, we proposed and analyzed a mathemati-
cal model for trypanosomiasis that incorporates mul-
tiple hosts, humans, cattle and wildlife. We derived 
the reproduction number and utilized it to investigate 
global stability of the model steady states. We per-
formed a sensitivity analysis, to identify model param-
eters that have positive and negative relationships with 
the reproduction number. The results showed that 
increasing the tsetse fly mortality rate strongly reduces 
the reproduction number. In addition, we also observed 
that increasing the exit rate of the host from stage 1 
of infection can significantly reduce the reproduction 
number. Results also showed that: tsetse fly feeding rate 
and the probability of disease transmission from the 
vector to host and vice-versa are positively correlated 
with the basic reproduction number. Thus increas-
ing these parameters will increase the reproduction 
number.

We extended the basic model into an optimal control 
problem by incorporating time-dependent screening and 
treatment of humans and cattle, to minimize the propor-
tion of infected humans and cattle over a defined time 
horizon at minimal costs. The results showed that time 
dependent control can significantly reduce the disease 
burden in all the hosts, and to obtain such a favourably 
outcome, the control needs to be maintained at their 
maximum intensities for a greater part of the time hori-
zon. Overall, the study showed that time-dependent 
screening treatment of humans and cattle may signifi-
cantly reduce trypanosomiasis in communities where the 
disease is endemic and in proximity to game reserves. 
However, these control strategies may not lead to disease 
eradication in areas where there are wildlife reservoirs. 
Therefore, there may be a need to couple these interven-
tion strategies with others such as use of insecticides. The 
study presented in this article is not exhaustive, one can 
extend the work by incorporating host and vector migra-
tion as well as temperature variations.
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