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Abstract 

The regulation and maintenance of bone metabolic homeostasis are crucial for animal skeletal health. It has been 
established that structural alterations in the gut microbiota and ecological dysbiosis are closely associated with bone 
metabolic homeostasis. The gut microbiota and its metabolites, especially short-chain fatty acids (SCFAs), affect 
almost all organs, including the bone. In this process, SCFAs positively affect bone healing by acting directly on cells 
involved in bone repair after or by shaping appropriate anti-inflammatory and immunomodulatory responses. Addi‑
tionally, SCFAs have the potential to maintain bone health in livestock and poultry because of their various biological 
functions in regulating bone metabolism, including immune function, calcium absorption, osteogenesis and oste‑
olysis. This review primarily focuses on the role of SCFAs in the regulation of bone metabolism by gut microbiota 
and provides insight into studies related to bone health in livestock and poultry.
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Introduction
The skeleton, which is made up of bones, has a number 
of functions, including bearing the weight of the body, 
storing minerals like calcium and phosphorus, and pro-
ducing blood cells in the bone marrow. Therefore, the 
management and upkeep of bone metabolic homeo-
stasis are crucial for the health of an animal’s skeleton. 
Bone metabolism is characterized by the close coop-
eration of bone cells (including osteoblasts, osteoclasts 
and osteocytes) to maintain the number and integrity 

of bone microarchitecture, and once the homeostasis of 
bone metabolism is disrupted, it may result in bone loss, 
greatly increasing the risk of bone diseases (Barsony et al. 
2019). Bone disease, a phenomenon of prevalent occur-
rence in the modern poultry industry, results from the 
disruption of the normal processes of bone formation 
and homeostasis. It is estimated that the U.S. broiler 
industry lost $80–120 million annually due to leg dis-
ease in the early 1990s. This problem still poses more sig-
nificant threat to the broiler industry with the increased 
intensive management of poultry today (Xu et al. 2022a), 
which not only results in motor dysfunction accompa-
nied by symptoms like claudication, slow movement, and 
difficulty in standing (Xu et al. 2022b) but also decreases 
production performance and meat quality (Huang et  al. 
2021; Cao et al. 2020), leading in huge economic losses. 
In addition, animals including pigs, cattle, and sheep are 
also susceptible to bone illnesses, but there are currently 
no viable treatments to prevent or slow the progression 
of these conditions (Hejazi and Danyluk 2009; Tóth et al. 
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2017; Yadav et  al. 2019). As a result, the bone disease 
has extremely extensive impacts, making it essential to 
explore efficient remedies.

According to recent research, gut microbiota plays a 
critical regulatory role in maintaining bone homeostasis 
and bone health (Chen et  al. 2022). Intestinal microbes 
can influence bone homeostasis by participating in 
metabolic, immune and endocrine processes (Xu et  al. 
2022a). In the gastrointestinal tract (GIT), gut micro-
biota and host cells interact in ways that are typically 
advantageous to the host, including promoting the matu-
ration of the intestinal immune system through interac-
tion with immune cells (e.g., macrophages and dendritic 
cells) and maintaining the integrity of the intestinal bar-
rier by inducing mucus production and providing nutri-
tion to the intestinal epithelial cells (Xu et  al. 2022a). 
However, alterations in the gut microbiota can disrupt 
the beneficial microbe-host relationship, which leads 
to the development or progression of diseases, includ-
ing inflammatory bowel disease, cardiovascular disease, 
asthma, and rheumatoid arthritis (Deal 2012; Xu et  al. 
2022a; Zhang et al. 2022).

Several studies have confirmed that the gut micro-
biota affects bone metabolic homeostasis through vari-
ous pathways and that short-chain fatty acids (SCFAs), 
metabolites of the gut microbiota, play a key role in bone 
metabolism, including immunity, calcium absorption, 
deposition, osteogenesis and osteolysis (Holscher 2017; 
Sanders et  al. 2019; Zhang et  al. 2021; Xu et  al. 2023). 
This paper summarizes recent publications on the regu-
lation of bone metabolic homeostasis by SCFAs, aiming 
to explore and introduce the regulatory role of SCFAs in 
bone metabolism and to provide insight for the preven-
tion and treatment of skeletal diseases in livestock and 
poultry.

Bone metabolism and gut microbiota
Bone metabolism occurs in a dynamic equilibrium 
between bone resorption and bone formation, and this 
process requires the synergistic action of osteoclasts and 
osteoblasts (Xu et  al. 2022b). Different roles are played 
by osteoblasts and osteoclasts in maintaining animals’ 
appropriate amounts of bone mass. In contrast to oste-
oclasts, which are primarily in charge of resorbing the 
bone matrix, osteoblasts are responsible for the synthe-
sis, secretion and mineralization of bone matrix (Hu and 
Olsen 2016; Ono and Nakashima 2018). In addition, the 
synergistic effect of osteoblasts and osteoclasts is influ-
enced by several factors, such as stem cell antigens, hor-
mones, growth factors, and SCFAs (Chen et  al. 2018, 
2022; Lucas et al. 2018).

Animal tissues and organs are inextricably linked to 
one another. The intestine, the largest immunological 
organ in both humans and animals, plays an important 
role in the immune system and the equilibrium of bone 
metabolism (Alonso et al. 2014). Peek et al. (2022) con-
firmed that intestinal inflammation strengthens the dif-
ferentiation of osteoclasts, which significantly increases 
bone loss and jeopardizes bone health. Moreover, the 
microbes in the gut also have a key role in the regulation 
of bone mass. A study by Xi et  al. (2022) demonstrated 
that favorable alterations in gut microecology under the 
influence of probiotics could alleviate bone loss caused 
by rheumatoid joints. The above findings show a strong 
correlation between gut and bone health.

In the GIT, microorganisms and their host have a com-
plex, mutually beneficial symbiotic interaction resulting 
from their long-term coevolution and reciprocal influ-
ence. These huge and richly diversified microbial com-
munities contribute significantly to the preservation of 
bone health by regulating bone metabolism through their 
metabolites or gut microbiota-mediated regulators of bone 
metabolism (Xu et  al. 2022a). It has been demonstrated 
that the gut microbiota can regulate the ratio and relative 
activity of osteoclasts and osteoblasts through multiple 
pathways, thereby affecting bone metabolism and bone 
development (Behera et al. 2020). SCFAs, the metabolites 
of gut microbes, regulate osteoblasts’ differentiation, pro-
liferation, and apoptosis through regulatory T cells (Tregs), 
thereby affecting bone metabolic processes. Furthermore, 
Yan reported that SCFAs could regulate serum levels of 
insulin-like growth factor 1 and improve bone growth and 
health (Yan et al. 2016). Therefore, SCFAs may be a funda-
mental substance in controlling bone metabolism and pre-
venting bone loss by the gut microbiota.

Bone health and SCFAs
Composition and origin of SCFAs
SCFAs, including a class of acid metabolites such as ace-
tic acid, propionic acid, butyric acid, valeric acid, isobutyl 
and isovaleric acid, are produced by bacteria in the gut 
of humans and animals by the fermentation of indigest-
ible carbohydrates and proteins in food (Sam et al. 2021). 
SCFAs are derived from the soluble dietary fiber found in 
foods like oligosaccharides (bananas, onions and aspara-
gus), pectin (apples, apricots, carrots, oranges), kidney 
beans, oat bran, corn starch, milk, yogurt, and sprouted 
barley. Other significant sources of SCFAs include resist-
ant starches including barley, rice, beans, green bananas, 
and potatoes (Barber et  al. 2020; Li et  al. 2020; P and 
Joye 2020; Cronin et  al. 2021). These indigestible fib-
ers are not digested and absorbed in the small intestine 
and are subsequently fermented by microbiota in the 
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cecum and large intestine; SCFAs are mostly generated in 
the cecum as well as the proximal colon and less in the 
distal colon (Sun et  al. 2017a, b). The primary constitu-
ents of intestinal SCFAs are acetic acid, propionic acid, 
and butyric acid, which together make for 90%-95% of 
the total amount of SCFAs generated by gut microbiota 
(Wong et al. 2006). Therefore, the three types of SCFAs 
described above have been studied extensively, particu-
larly butyric acid.

Biological functions of SCFAs
SCFAs are closely related to intestinal microecology 
and are involved in a wide range of biological processes, 
including signal transduction, cytokine modulation, 
immune cell regulation and intestinal mucosal barrier 
function (Tan et al. 2014; Louis and Flint 2017). Further-
more, it has been confirmed that SCFAs increase bone 
formation and improve bone quality by regulating immu-
nity, intestinal barrier function and immune cell activity 
(Wong et al. 2006; Li et al. 2020; Xu et al. 2022a).

At the intestinal endothelium barrier, host cells can 
directly transport SCFAs throughout the body, thus 
affecting distant tissues. GPR43, GPR41 and GPR109a 
are examples of G protein-coupled receptors (GPRs) that 
may lind to SCFAs (Zaiss et al. 2019). These membrane-
bound receptors are expressed on various immune cell 
types, including monocyte macrophages, as well as on 
other non-immune cells, such as intestinal epithelial 
cells, adipocytes and enteroendocrine cells (Sun et  al. 
2017a, b). According to Melhem et  al. (Melhem et  al. 
2019), the binding of these receptors to SCFA leads to the 
release of intracellular Ca2+ and the activation of different 
downstream signaling pathways, including the Extracel-
lular signal-regulated kinase/mitogen-activated protein 
kinase, p38 or Phosphatidylinositide 3-kinases signaling 
pathway, which regulates cellular activity and function. 
Additionally, some SCFAs, like butyrate, serve as a major 
source of energy for the essential functions of intestinal 
epithelial cells, which directly affect the formation and 
proliferation of these cells. Nevertheless, a certain num-
ber of SCFAs reach the bloodstream through transport 
systems (monocarboxylate transporter 1/Solute Carrier 
family 16 member 1 pathway or passive diffusion) and are 
transported to the whole body through the transport sys-
tem. Once enter the circulatory system, SCFAs affect the 
metabolism and function of peripheral tissues (adipose 
tissue, skeletal muscle, bone, etc.) by activating GPRs 
(Zhou and Fan 2019; Li et al. 2021).

Butyric acid and bone health
Butyric acid (C4H8O2) exhibits the most extensive biolog-
ical activity among SCFAs, including regulating inflam-
mation, maintaining immune homeostasis, and lessening 

bone loss caused by inflammation. By inhibiting GPR41 
and HDAC, butyric acid can increase the production of 
IL-22, while downregulate the proinflammatory media-
tors NO, interleukin-6 (IL-6) and IL-12 produced by 
lipopolysaccharide (LPS)-induced macrophages (Nastasi 
et al. 2017). Butyric acid inhibits the maturation and bio-
logical activity of monocyte-derived dendritic cells and 
promotes the polarization of early CD4 + T cells into 
IL-10-producing Tregs that are stimulated by LPS (Park 
et al. 2016). Butyric acid regulates the inflammatory state 
of the body by activating GPRs in the intestinal mucosal 
epithelium, reducing the synthesis and secretion of pro-
inflammatory factors such as tumor necrosis factor-α 
(TNF-α) and cyclooxygenase-2, thereby reducing the 
bone loss caused by inflammation (Yang et  al. 2020; 
Zhang et al. 2022).

Furthermore, butyric acid alleviates intestinal inflam-
mation and reduces osteoclast differentiation by attenu-
ating TNF-α-mediated immune responses and reducing 
inflammatory vesicles such as NOD-like receptor protein 
3 (NLRP3) (Clark and Mach 2017). Additionally, butyrate 
has been reported to control the expression of claudin-2, 
lower intestinal permeability via an IL-10 receptor-
dependent mechanism, and strengthen intestinal barrier 
function by increasing colonic mucin and tight junction 
protein production (Barsony et  al. 2019; Gonzalez et  al. 
2019), enhancing immune response system function and 
thereby prevent bone loss (Yan and Ajuwon 2017). Kaisar 
et  al. (2017) found that butyrate suppressed the expres-
sion of the proinflammatory factor Interferon-γ (IFN-γ) 
caused by overactivation of the IFN-γ/signal transducer 
and activator of transcription 1 (STAT1) signaling path-
way. Moreover, butyrate also modulates the immune 
effect and relieves osteoarthritis by inhibiting the activ-
ity of the inflammation-related pathways Nuclear factor 
kappa-B (NF-κB), Janus Kinase /STAT, IL-12p70, and 
IL-23 and preventing the polarization of early CD4 + T 
lymphocytes into T helper cells 1 (Th1) and Th17 cells 
(Dalile et  al. 2019). In summary, butyric acid helps to 
maintain bone health by regulating immune function and 
alleviating bone destruction and loss.

Acetic acid and bone health
Acetic acid (C2H4O2) is one of the most abundant SCFAs 
produced by the gut microbiota (Lavelle and Sokol 2020). 
It positively impacts bone health by preserving the integ-
rity of the intestinal mucosal barrier, limiting the invasion 
of pathogenic bacteria and enhancing the host’s immune 
function. According to Deleu , acetic acid is mostly found 
in tissues, excrement, and blood in animals (Deleu et al. 
2021). Acetic acid increases the production of IgA in the 
colon, alters the ability of IgA to bind to specific intesti-
nal bacteria, and alters the colonization of these bacteria, 
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enhancing the immune barrier function of the intestinal 
mucosa, thereby indirectly reducing the release of proin-
flammatory factors like TNF-α and IL-1β, inhibiting oste-
oclast activity and preventing bone loss (Boets et al. 2017; 
Takeuchi et  al. 2021). In addition, acetic acid can acti-
vate the GPR41 receptor on the surface of immune cells, 
enhancing the immune effect and facilitating the mainte-
nance of bone health (Le Poul et al. 2003; Kobayashi et al. 
2016). Maslowski demonstrated that acetic acid signifi-
cantly enhanced intestinal function and reduced DNA-
dependent activator of interferon-regulatory factors and 
inflammatory mediator myeloperoxidase levels and TNF-
α, thereby facilitating the remission of the inflammatory 
response and reducing osteoclast production and differ-
entiation (Maslowski et al. 2009). According to the afore-
mentioned information, acetic acid enhances immune 
function and inhibits the release of proinflammatory fac-
tors, which prevents the activation of osteolytic effects.

Propionic acid and bone health
Propionic acid (C3H6O2) is an organic acid that naturally 
develops as a result of the kind of bacterial action found 
on the skin or in the GIT. After entering the circulation, 
propionic acid in the gut performs a variety of functions, 
including affecting hepatic cholesterol metabolism, pro-
moting calcium absorption, increasing calcium deposi-
tion, and facilitating bone formation (Hirschberg et  al. 
2019; Lavelle and Sokol 2020). In addition, propionic 
acid not only activates NLRP3 inflammatory vesicles in 
intestinal epithelial cells, induces IL-18 secretion, and 
improves the integrity of the intestinal mucosal epithe-
lial barrier, but also inhibits histone deacetylase and low-
ers NF-κB activity, thereby reducing the release of the 
inflammatory factors TNF-α, IL-6, and IL-8 and affect-
ing the structure and function of the intestinal mucosal 
barrier (Duscha et  al. 2020). It has been demonstrated 
that osteoporosis is closely associated with the cellular 
imbalance of the immune system and immune-mediated 
effects on bone formation through the gut (Arpaia et al. 
2013). Interestingly, mice with SCFA intake exhibited 
increased bone mass in mice accompanied by a decrease 
in inflammation-induced bone loss. In a study on the 
effects of propionic acid supplementation on human 
bone metabolism, Duscha et  al. (2022) uncovered that 
intake of propionic acid significantly increased serum 
levels of osteocalcin (a marker of bone formation), and 
decreased β-CrossLaps levels (a marker of bone resorp-
tion), suggesting that propionic acid intake increases 
bone formation and decreases bone resorption.

Valeric acid and bone health
The GIT had high levels of propionate and butyrate and 
low levels of valeric acid (C5H10O2) (Cummings et  al. 

1987). However, a study confirmed that total specific 
inhibition of HDAC and promotion of differentiation of 
Tregs into T cells by promoting the capacity of intesti-
nal microorganisms to generate butyric and valeric acid 
could enhance bone immunity indirectly (Yuille et  al. 
2018). Studies have demonstrated that valeric acid lev-
els are initially low in animals, and dietary fiber intake 
helps to increase valeric acid levels, which contributes 
to reducing the release of proinflammatory factors and 
mitigates bone destruction (Yuille et al. 2018; Gio-Batta 
et al. 2022), indicating the immunomodulatory ability of 
valeric acid and its potential therapeutic value for inflam-
mation-induced bone diseases.

There are similarities in the functions of the different 
SCFAs. For example, they can regulate the composition 
of the gut microbiota by balancing gut pH and prevent-
ing the colonization of pathogenic bacteria, which facili-
tates the establishment of the intestinal immune barrier 
and inhibits the release of inflammation-related signal-
ing molecules IL-6, IL-7, receptor activator for nuclear 
factor-κB ligand (RANKL), thereby reduces osteoclast 
differentiation and promotes bone health. According to 
the aforementioned data, a close association between 
bone health and gut health is established through SCFAs.

Gut microbiota and SCFAs
Different types of gut microbes generate different 
amounts of SCFAs through fermentation (Table 1). The 
study of Wolin confirmed that the fermentation prod-
ucts of Lactobacillus are mainly lactic acids  (Wolin 
et al. 1999). The fermentation products of Megasphaera 
elsdenii are mainly acetic acid and butyric acid, whereas 
the fermentation products of Bifidobacterium are 
mostly acetic acid, lactic acid, and formic acid. It can 
be seen that different types of gut microbes produce 
different SCFAs. In addition, dietary fiber is important 
for the composition and metabolic function of the gut 
microbiota and can affect the amount of SCFAs. Diet 
has a decisive role in the composition of the gut micro-
biota and the amount of SCFAs. Therefore, it is possible 
to alter the structure of the gut microbiota through diet 
to regulate SCFAs. Even short-term dietary interven-
tions can have a significant impact on gut microbiota 
structure. In particular, diets based exclusively on ani-
mal products, consuming reduced-fat foods high in 
protein and low in carbohydrates or fiber, can cause 
an imbalance in the structure of the microorganism by 
increasing the relative abundance of Bacteroidetes and 
decreasing the relative quantity of Firmicutes, while 
affecting SCFA concentrations in the intestine (Simp-
son and Campbell 2015). In conclusion, long-term 
poor dietary habits may increase the risk of intestinal 
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diseases, and the intake of more fermentable dietary 
fiber can regulate the composition of the gut microbi-
ota and thus positively affect the prevention of diseases.

When investigating the concentration of SCFAs under 
different gut microbiota structures, it was found that the 
capacity of the gut microbiota to produce SCFAs was 
enhanced by the addition of certain probiotics (LeBlanc 
et al. 2017). For example, in a broiler cecum model, sup-
plementation with Lactobacillus (L.) salivarius increased 
the concentrations of propionate and butyrate in the 
cecum (Meimandipour et al. 2010). Furthermore, it was 
summarized that changing the composition of gut micro-
biota by taking antibiotics, dietary changes and adding 
probiotics can affect bone health (Martin-Gallausiaux 
et  al. 2021). These findings show that the structure of 
gut microbiota can be altered by diet, which further 
affects SCFAs concentration, and that different species 
of gut microbiota produce different types and amounts of 

SCFAs. Additionally, it implies that SCFAs produced by 
the gut microbiota may regulate bone metabolism.

Regulation of SCFAs on bone metabolism
As bioinformatics and molecular biotechnology have 
developed, increasing studies have demonstrated that gut 
microbiota metabolites regulate bone metabolism (Zaiss 
et al. 2019; He et al. 2020; Xu et al. 2023). Among metabo-
lites in animals, SCFAs have been shown to affect almost 
all body organs, including bone (Roberfroid et al. 2010; Xu 
et al. 2023). SCFAs can participate in bone metabolism by 
directly acting on osteoblasts, osteoclasts, chondrocytes, 
and fibroblasts or indirectly by regulating the absorption 
of mineral elements and can also affect bone metabolism 
through modulating the immune system (Yan and Charles 
2017; Yan et al. 2018) (Fig. 1). Thus, SCFAs exhibit a wide 
range of beneficial effects on bone quality enhancement 
and bone metabolism activities.

Table 1  Gut microbiota for the synthesis of SCFAs

Only part of the gut microbiota that can produce SCFA is listed in the table

Phylum Family Genus/Species SCFAs References

Actinobacteria Bifidobacteriaceae Bifidobacterium adolescentis Propionic acid Reichardt et al. 2014

Bifidobacterium spp. Acetic acid

Bacteroidetes Bacteroidaceae Bacteroides fragilis Propionic acid
Butyric acid

Scott et al. 2006; Reichardt et al. 2014; Tang et al. 2019

Bacteroides spp. Acetic acid
Propionic acid

Bacteroides thetaiotaomicron Propionic acid
Butyric acid

Prevotellaceae Prevotella stercorea Acetic acid
Valeric acid

Hayashi et al. 2007

Firmicutes Streptococcaceae Streptococcus spp. Acetic acid Scott et al. 2006; Louis et al. 2014

Clostridiaceae Clostridium beijerickii Propionic acid
Butyric acid

Scott et al. 2006; Rey et al. 2010; Shetty et al. 2013; Van 
et al. 2013; Louis et al. 2014; Reichardt et al. 2014

Clostridium botulinum Propionic acid
Butyric acid

Clostridium butyricum Butyric acid

Lachnospiraceae Coprococcus comes Propionic acid
Butyric acid

Coprococcus eutactus Propionic acid
Butyric acid

Veillonellaceae Megasphaera elsdenii Acetic acid
Propionic acid
Butyric acid
Valeric acid

Shetty et al. 2013; Louis et al. 2014

Megasphaera spp. Acetic acid
Propionic acid
Butyric acid
Valeric acid

Proteobacteria Enterobacteriaceae Salmonella spp. Propionic acid Shetty et al. 2013

Verrucomicrobia Verrucomicrobiaceae Akkermansia muciniphila Acetic acid
Propionic acid

Van et al. 2013
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SCFAs regulate bone metabolism through the immune 
system
SCFAs promote the maturation of the animal immune 
system and regulate bone metabolism through the 
immune system (Morrison and Preston 2016). Stud-
ies have shown that gut microbiota can interact with 
immune cells and dendritic cells to promote the produc-
tion of molecules like SCFAs, indole derivatives, polyam-
ines and secondary bile acids (D’Amelio and Sassi 2018). 
In particular, immune cells express SCFA receptors, and 
the binding of SCFA to the corresponding receptors has 
a regulatory effect on T-cell function and immune cell 
differentiation, thereby enhancing immune function and 
preventing inflammation-related bone loss (Yuille et  al. 
2018; Gio-Batta et al. 2022). In addition, there is evidence 
that in osteoporosis caused by estrogen deficiency, T cells 
can increase the production of pro-inflammatory and 
pro-osteoclastic cytokines in bone tissue. Such as TNF-α 
and RANKL, and that the upregulation of the expression 
of these factors in osteoblasts enhances the osteoclas-
togenesis induced by Th17 to stimulate the regulation of 
bone resorption (D’Amelio et al. 2008). Therefore, SCFAs 

may play an important role in bone metabolism and 
bone mineral density due to their close relationship with 
immune cells and bone cells.

Furthermore, butyrate and propionate have been shown 
to regulate intestinal immunological function by inhibit-
ing histone deacetylase (HDAC) (Ratajczak et  al. 2019). 
Chang demonstrated that butyrate produced by gut 
microbiota acts as an inhibitor of HDAC and modulates 
the function of macrophages in the lamina propria of the 
mouse gut. Related studies have shown that the inhibi-
tion of HDAC increases the development and function of 
Tregs (Chang et al. 2014). Therefore, it may be one of the 
mechanisms by which SCFAs enhance the production of 
Tregs in the GIT (Huang et al. 2017). The interaction of 
SCFAs with GPRs not only drives the differentiation of T 
cells into Tregs (Fig. 1) but also promotes differentiation 
into effector T cells (Kim et al. 2013). Park and colleagues 
suggested that SCFAs may induce helper T cells to dif-
ferentiate into Th1 and Th17, thereby increasing host 
resistance to pathogen attack (Trompette et al. 2014; Park 
et al. 2015). SCFAs such as butyrate and propionate also 
regulate antigen presentation through HDAC inhibition 

Fig. 1  SCFAs produced by gut microbiota facilitate bone health. SCFAs can reduce intestinal pH and promote calcium absorption. In terms 
of immunity, SCFAs induce Th differentiation into CTLs and Tregs and regulate serotonin content through Th, which directly or indirectly promotes 
bone formation and inhibits bone resorption. Furthermore, SCFAs regulate Tregs by inhibiting HDAC and activate osteogenic differentiation 
and osteoclast differentiation-related genes to control bone metabolism. SCFAs also promote the differentiation and activity of osteoblasts 
and inhibit the activity of osteoclasts to some extent, thus facilitating the calcification and deposition of bones and reducing the risk of bone loss 
(e.g., estrogen deficiency). Meanwhile, it can suppress the secretion of inflammatory mediators, which is beneficial to bone health
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by interacting with GPRs and have an inhibitory effect 
on dendritic cell development. Together, the gut micro-
biota can affect the overall immune function of the host 
through SCFAs, immune cells and immune factors acting 
on bone tissue to affect the biochemical activity of oste-
oblasts in this process and exert a regulatory effect on 
bone homeostasis and bone mass.

SCFAs affect calcium absorption, BMD and bone strength
SCFAs can increase calcium deposition, bone mineral 
density (BMD) and mechanical strength (Weaver 2015). 
As we all know, calcium is an essential element for bone 
formation, and sufficient calcium is necessary to improve 
bone quality and increase bone mechanical strength 
(Rovenský et  al. 2003; Zhao et  al. 2020a, b). To achieve 
a healthy peak bone mass and prevent the onset of bone 
loss, maintaining calcium balance is essential. Prebiot-
ics are food components that selectively stimulate the 
growth or activity of one or several bacteria in the colon, 
thus exerting a beneficial effect on the host and helping 
to regulate the composition of the gut microbiota (Quig-
ley 2019). The production of SCFAs by the fermentation 
of prebiotics by gut microbiota can enhance calcium 
absorption, bone mineral density, and bone strength 
(Weaver 2015). A study found that daily prebiotic fiber 
intake can enhance calcium absorption in adolescent 
children, which is beneficial to the bone development of 
adolescent-aged children (Whisner et  al. 2014). SCFAs 
are key to the impact of prebiotic fiber on bone. Dietary 
fiber intake affects calcium absorption: increased lev-
els of intestinal SCFAs after fermentation by gut micro-
biota can reduce the pH of the intestinal microecology, 
thus reducing the formation of calcium phosphate and 
increasing calcium production and absorption (Wallace 
et  al. 2017). A study by Wallimann also confirmed that 
butyric acid significantly increases calcium deposition at 
the site of bone injury and promotes bone healing (Wal-
limann et al. 2021). The above demonstrates the potential 
of SFCAs in promoting skeletal growth.

The effect of SCFAs on calcium deposition may not 
only be reflected in changes in intestinal pH. Indeed, 
SCFAs have been shown to increase calcium transport 
by regulating some signaling pathways (Gultemirian et al. 
2014; Chen et  al. 2019). Furthermore, SCFAs can indi-
rectly improve calcium absorption by modulating the 
production of intestinal serotonin, namely, 5-hydroxy-
tryptamine (5-HT, Wang et  al. 2020). Serotonin, a mol-
ecule that interacts with osteoblasts, has been used as a 
potential regulator of bone mass to prevent osteoporosis 
by increasing bone formation (De Vernejoul et al. 2012). 
Duodenal enterochromaffin cells have the biological 
function of synthesizing 5-HT and can promote the syn-
thesis of 5-HT under the action of SCFAs (Ducy 2011). 

It has been reported that 5-HT can interact with osteo-
blasts, especially by activating the 5-HT1B receptor on 
preosteoblasts to reduce osteoblast proliferation and thus 
improve the bone loss caused by osteoporosis (Reigstad 
et  al. 2015). In conclusion, SCFAs can directly or indi-
rectly regulate bone formation, thereby increasing bone 
mineral density and bone strength and reducing fracture 
risk.

The regulatory role of SCFAs in osteoblasts
SCFAs can promote bone formation by regulating osteo-
blast activity. Osteoblasts have a pivotal role in bone for-
mation, and the activation of Wnt signaling in osteoblasts 
is essential for osteoblast proliferation and bone homeo-
stasis (Chen et al. 2019). Studies have demonstrated that 
the Wnt signaling pathway is crucial for bone growth and 
endostasis; moreover, SCFAs can activate the Wnt path-
way and induce the expression of the transcription fac-
tor osterix, thereby promoting osteoblast differentiation 
(Fig. 1) (Kobayashi et al. 2016; Chen et al. 2019). In addi-
tion, this signaling pathway stimulates osteoprotegerin 
(OPG), an osteoclast suppressor, to be expressed in oste-
oblast lineage cells, which prevents bone resorption (Xu 
et al. 2022a, b). In a human study by Katono, it was found 
that butyrate can affect normal osteoblasts, increase 
osteoblast mineralization to promote bone formation 
and inhibit osteoclast differentiation by promoting OPG 
production (Katono et al. 2008).

SCFAs can indirectly regulate bone metabolism 
through Tregs. Tregs regulate the body’s immune func-
tion by actively regulating the activation and proliferation 
of potentially self-reactive T cells in normal organisms. 
In addition to their immunomodulatory functions, Tregs 
can also exert some regulatory effects on bone homeo-
stasis. They inhibit osteoclastogenesis, promote osteo-
blast differentiation and are required for parathyroid 
hormone-stimulated bone formation (Ko 2017). Tregs 
were isolated from SPF mice and cultured in  vitro with 
SCFAs. It was found that in the presence of propion-
ate, the proliferation of Tregs can be promoted, thereby 
enhancing the regulation of bone homeostasis by Tregs 
(Smith et al. 2013). Supplementation with probiotics can 
alleviate pathological bone loss to some extent. Our study 
has demonstrated that L. rhamnosus prevented thiram-
induced tibial dyschondroplasia by improving bone-
related growth performance in broilers, including tibia 
weight, length, and mean diameter (Liu et al. 2021). Tyagi 
found that supplementation of L. rhamnosus in mouse 
diets can affect bone homeostasis, and the results showed 
that L. rhamnosus increased the volume of bone trabecu-
lae and promoted increased bone formation (Tyagi et al. 
2018). This was attributed to the production of butyrate 
in the gut after L. rhamnosus ingestion, which induced 
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the proliferation of Tregs in the intestine and bone tissue. 
The same results were obtained in an experiment where 
butyrate was fed directly to germ-free mice (Doublier 

et  al. 2022). These studies suggested that SCFAs may 
indirectly regulate bone homeostasis through the biologi-
cal function of Tregs.

Table 2  The function and role of SCFAs involved in bone health

Abbreviations: OP Osteoporosis, HDAC Histone deacetylase, RANKL Receptor activator of nuclear factor-κB ligand

Function Types of SCFA Object of study Effect References

Immunity Acetic acid
Propionic acid
Butyric acid
Isobutyric acid
Valeric acid
Isovaleric acid

Mice Probiotics can regulate the immune response 
and relieve inflammation by producing SCFAs

Khan et al. 2022

Butyric acid Mice The development of arthritis in mice is inhibited 
by butyrate by modulating cellular and humoral 
immune responses, and it has an ameliorative 
effect on bone

He et al. 2022

Acetic acid
Butyric acid
Isobutyric acid

Mice The production of SCFAs has a mitigating effect 
on OP development

Zhao et al. 2020a, b

The regulation of calcium Acetic acid
Propionic acid
Butyric acid

Laying hens Promote intestinal absorption of calcium Gultemirian et al. 2014

Acetic acid
Propionic acid
Butyric acid
Valeric acid

Mice Increases calcium deposition at the site of bone 
injury and accelerates bone formation

Wallimann et al. 2021

Acetic acid
Propionic acid
Butyric acid
Isobutyric acid
Valeric acid
Isovaleric acid

Rats Increases mineral availability by increasing calcium 
dissolution at lower pH, thereby increasing bone 
mineral content and deposition

Weaver et al. 2010

Osteogenesis Butyric acid Human beings Increased mineralization of osteoblasts promotes 
bone formation and inhibits osteoclast differentia‑
tion by promoting OPG production by human 
osteoblasts

Ko. 2017

Butyric acid Mice Butyrates can increase the number of Tregs 
in the intestine and bone marrow. Tregs can 
stimulate CD8 + T cells, which can secrete Wnt10b 
and promote bone formation by activating Wnt 
signaling in osteoblasts

Arpaia et al. 2013; Chen et al. 2019

Propionic acid SPF Mice Propionate can promote the proliferation of Tregs, 
thereby enhancing the regulation of Tregs 
on bone homeostasis

Liu et al. 2021

Butyric acid Mice The induced proliferation of Tregs in the gut 
and bone tissue and increased trabecular bone 
volume, and promoted bone formation in mice

Tyagi et al. 2018

Osteoclastogenesis Butyric acid Rats, Mice Butyrate can inhibit the production of osteoclast 
precursor cells by inhibiting the activity of His‑
tone deacetylase (HDAC). Butyric acid inhibits 
the formation of osteoclasts and the expression 
of osteoclast-specific mRNA under the stimulation 
of RANKL

Rahman et al. 2003

Isovaleric acid Mice Isovaleric acid suppresses differentiation of bone 
marrow-derived macrophages into OCs by RANKL. 
Isovaleric acid inhibited the expression of OC-
related genes

Cho et al. 2021

Acetic acid
Propionic acid
Butyric acid
Valeric acid

Mice Genes related to osteoclast differentiation are 
differentially expressed in osteoclast precursor 
cells, which can significantly reduce osteoclast 
formation and bone resorption activity

Wallimann et al. 2021
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The regulatory role of SCFAs in osteoclasts
SCFAs have the ability to modulate osteoclast activity, 
which in turn regulates bone resorption. Osteoclasts are 
critical cells involved in the regulation of bone resorption 
and are essential for maintaining the homeostasis of bone 
metabolism. Montalvany-Antonucci studied the effect 
of SCFA on alveolar bone and found that SCFA acts as a 
regulator of bone resorption and reduces osteoclast dif-
ferentiation dependent on the activation of free fatty acid 
receptor 2 (Montalvany-Antonucci et al. 2019).

Osteoclast generation and bone resorption are energy-
consuming processes closely related to energy metabo-
lism. Lemma demonstrated that the energy required for 
osteoclast differentiation is mainly from oxidative phos-
phorylation, while peripheral cellular activities associated 
with bone matrix degradation are powered by glycolysis 
(Lemma et  al. 2016). In the study of Lucas, the protec-
tive effect of SCFAs on bone mass was associated with 
the inhibition of osteoclast differentiation and bone 
resorption  (Lucas et  al. 2018). Because propionate and 
butyrate induce a shift in the metabolic direction of oste-
oclasts, leading to enhanced glycolysis without significant 
changes in oxidative phosphorylation levels, resulting 
in downregulation of essential osteoclast genes, such as 
TNF receptor-associated factor 6 (TRAF6) and Nuclear 
factor of activated T-cells, cytoplasmic 1 (NFATc1), 
affecting RANKL-induced osteoclast differentiation, 
thereby reducing the number of osteoclasts and regulat-
ing bone homeostasis (Fig. 1, Lucas et al. 2018). Wauquier 
found that GPR40 receptor-deficient mice displayed 
osteoporosis-like symptoms, indicating that GPR40 
receptors have a favorable impact on bone density and 
serving as a mediator of fatty acid-induced bone remod-
eling  (Wauquier et  al. 2013). An in  vitro experimental 
study by Wallimann revealed that many genes involved 
in osteoclast differentiation after butyric acid treatment 
were found to be differently expressed in osteoclast pre-
cursor cells (Wallimann et al. 2021). Additionally, differ-
entially expressed genes on osteoblast precursor cells can 
markedly lessen the production of osteoclasts and the 
activity of bone resorption (Wallimann et al. 2021). Based 
on the above findings, SCFAs are an effective regulator of 
osteoclast metabolism and bone homeostasis.

Conclusions 
Due to the intensification of the livestock and poultry 
industries in recent years, the bone problem has become 
more prevalent. Nowadays, there is an urgent need for 
effective control and treatment of skeletal diseases, and 
it is especially important to develop reasonable preven-
tive and therapeutic strategies. There has been evidence 
that SCFAs that regulate the gut microbiota indirectly 
can modulate bone metabolism and prevent bone loss 

directly, improving bone health. In order to support bone 
health, SCFAs modulate the immune system, calcium 
absorption, and bone cell regulation (Table  2). There-
fore, a more effective approach for bone diseases or bone 
health may be found according to provided animals with 
appropriate SCFAs.

In animal production, SCFAs may be widely employed 
as feed additives, which would help animals build their 
bones and indirectly increase production efficiency. Tar-
geting SCFA as an entrance point might lead to the devel-
opment of novel treatment approaches for metabolic 
bone disorders since it plays a significant role in bone 
remodeling. Furthermore, increasing the SCFA content 
through the supplementation of probiotics, prebiotics, 
or natural active components would be a safe, effective 
and affordable therapy. Certainly, additional studies are 
required to identify the probiotics, prebiotic prepara-
tions or natural active components that enhance the 
SCFA concentration, and then to determine their opti-
mal ratios and dosages for clinical application. In the 
future, it is anticipated that the potential contribution of 
SCFAs will be found with the advancement of biomedical 
technology.
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