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REVIEW

Monocyte and macrophage function 
in respiratory viral infections
Mohd Arish1,2 and Jie Sun1,2*   

Abstract 

Pulmonary macrophages, such as tissue-resident alveolar and interstitial macrophages and recruited monocyte-
derived macrophages, are the major macrophages present in the lungs during homeostasis and diseased conditions. 
While tissue-resident macrophages act as sentinels of the alveolar space and play an important role in maintaining 
homeostasis and immune regulation, recruited macrophages accumulate in the respiratory tract after acute viral 
infections. Despite sharing similar anatomical niches, these macrophages are distinct in terms of their origins, surface 
marker expression, and transcriptional profiles, which impart macrophages with distinguished characteristics in physi-
ological and pathophysiological conditions. In this review, we summarize the current view on these macrophage 
populations, their shared functions, and what makes them distinct from each other in the context of homeostasis 
and respiratory viral infections.
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SARS-CoV-2

Introduction
Lung macrophages play a critical role in shaping homeo-
stasis and immune regulation and encounter pathogens 
(Hou et al. 2021). Not only are macrophages among the 
first immune cells to encounter viral particles in the lung, 
but they also maintain lung function by engulfing small 
debris and regulating surfactant turnover (Aegerter et al. 
2022). Interestingly, these immune populations are fur-
ther distinguished by the lung microenvironment, dif-
ferential surface receptor expression, and transcriptional 
signature, which provide them with distinct characteris-
tics (Aegerter et  al. 2022). Alveolar macrophages (AM) 
and  interstitial macrophages (IM) are two pulmonary 
resident macrophage populations that are present during 

homeostatic conditions. However, a third major contrib-
utor, monocyte-derived macrophages, appeared mostly 
during inflammatory conditions such as viral infections 
(Bain and MacDonald 2022). Alveolar macrophages are 
the predominant macrophage population that are mainly 
present in alveoli and airways. Lung IM resides specifi-
cally in the interstitial space but can also be found in the 
alveolar space in a low percentage (Duan et al. 2017).

After a respiratory virus infection, the pool of resi-
dent macrophages is highly affected. AMs are partially 
depleted at the peak of viral-induced inflammation, fol-
lowed by the regeneration of AM pools by AM prolif-
eration and monocyte differentiation into new AMs (Li 
et al. 2022; Zhu et al. 2021). In particular, the AM pool is 
later filled by recruited monocyte-derived macrophages, 
leading to a drastic reshuffling of the macrophage popu-
lation. Notably, these recruited macrophages may have 
distinct metabolic, proliferative, and inflammatory gene 
expression than resident AMs (Mould et al. 2017), lead-
ing to the potential development of “trained immunity” 
in the AM compartment (Fig. 1). These recruited mono-
cyte-derived macrophages also protect lung function 
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by their heightened production of antipathogen factors 
and active phagocytosis of cellular debris (Aegerter et al. 
2020), although “trained” resident AMs may also con-
tribute to heightened antipathogen and/or antitumor 
immunity after primary infection (Wang et al. 2023; Yao 
et  al. 2018). Conversely, recruited macrophages are also 
directly responsible for lung fibrosis (McCubbrey et  al. 
2018; Wendisch et  al. 2021), a common repercussion of 
post-severe viral pneumonia, including coronavirus dis-
ease 2019 (COVID-19) (Wendisch et al. 2021).

This review article discusses the crucial role of distinct 
lung macrophage subsets in the immune response to 
respiratory viral infections such as influenza (IAV), res-
piratory syncytial virus (RSV), and severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). The review 
also discusses the potential drawbacks of an excessive 

or dampened macrophage response, leading to tissue 
damage and severe complications following viral infec-
tion. Last, the article emphasizes the importance of 
ongoing research to identify critical factors that regu-
late macrophage function in viral infection or during 
homeostasis.

AMs in viral infection
AMs have been strongly suggested to play a pivotal role 
in surfactant turnover and the removal of cellular debris, 
thus maintaining lung homeostasis under a steady state 
(Roberts et  al. 2017) (Fig.  1). Phenotypically, AMs are 
designated the CD11c- and Siglec  F-high population in 
mice; in humans, AMs mainly express CD11c, CD36, 
CD206, Macrophage Receptor With Collagenous Struc-
ture (MARCO), and Human Leukocyte Antigen – DR 

Fig. 1 Pulmonary Macrophages in health and disease: During homeostasis, AM helps in surfactant and cellular debris removal. Transcription 
factors such as PPAR-γ, ERG2, and BACH2 helps in maturation and differentiation of fetal monocytes that seeds alveolar space during embryonic 
stage. Together with signals such as GM-CSF, TGF-β, and neonatal derived 12-HETE, AM gain identity, with almost no input from circulatory 
monocytes. IM1 are also locally maintained, however, IM2 required monocytes for its maintenance. Following a respiratory virus infection, the pool 
of AM is partially depleted due to cell death. The lung compartment is later experienced CCR2 dependent influx of monocytes, which are later 
differentiated into monocyte derived alveolar macrophages (MoAM) that can drive lung inflammation and lung fibrosis. IM2 can be infected 
by respiratory viruses, which further amplify the inflammatory response
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isotype (HLA-DR) (Aegerter et  al. 2022). Peroxisome 
proliferator-activated receptor gamma (PPAR-γ), hemat-
opoietic protein-1 (Hem-1), early growth response 2 
(EGR2), and B lymphoid transcription repressor BTB and 
CNC homology 2 (BACH2) are some of the AM-specific 
factors that guide AM development, maturation, and 
maintenance (Schneider et al. 2014b; Suwankitwat et al. 
2021; McCowan et  al. 2021; Nakamura et  al. 2013). In 
addition, following infection, AM regulates tissue dam-
age by checking the misfiring of immune responses (Kopf 
et al. 2015). Increasing evidence has shown that AMs are 
required for protection against respiratory viral infec-
tion (Schneider et  al. 2014a; Kolli et  al. 2014). Intrigu-
ingly, AM can also be detrimental for mice infected with 
human metapneumovirus (hMPV). Depletion of AM 
by intranasal instillation of dichloromethylene bispho-
sphonate resulted in improved morbidity and reduced 
inflammatory cytokine secretion (Kolli et al. 2014). These 
contrasting studies suggested a dual behavior of AM 
in the context of any disease, and hence, to navigate to 
the exact role of these AMs, it is critical to consider the 
model of infection.

It is now widely accepted that AMs originate from 
the yolk sac as progenitor macrophages that seed and 
populate the alveolar space during the first week of the 
embryonic stage (Guilliams et  al. 2013). These fetal 
monocyte-derived AMs are maintained and differenti-
ated throughout life by granulocyte-macrophage colony-
stimulating factor (GM-CSF) and transforming growth 
factor beta (TGF-β) (Yu et  al. 2017; Schneider et  al. 
2014b), with minimal input from circulatory monocytes 
(Hashimoto et al. 2013). GM-CSF is further required for 
the maintenance of proper lung function, and infection 
of Csf2−/− mice with influenza simply aggregated this 
phenotype and proved to be lethal despite unaltered T 
and B-cell responses (Schneider et al. 2014a), suggesting 
that AMs are required for the maintenance of respiratory 
function after influenza infection.

AMs are the main immune cell type that produces 
type I interferons (IFNs) during respiratory viral infec-
tion, which is critical to suppress early viral replication 
(Kumagai et  al. 2007; Mallampalli et  al. 2021). Intrigu-
ingly, AM-secreted IFN-β, a type I IFN, is also associated 
with alveolar epithelial cell injury following IAV infection 
(Högner et al. 2013). These contrasting features of type I 
IFNs are suggested to be due to the timely IFN response, 
where the early type I response is protective and the 
prolonged or delayed type I IFN response is detrimen-
tal during viral infection (Channappanavar et  al. 2016). 
Similarly, even though AMs are largely anti-inflamma-
tory during homeostasis, they upregulate inflammatory 
cytokine production after respiratory viral infection 
(Huang et  al. 2019b; Zhu et  al. 2021). Thus, while AMs 

are largely beneficial in viral infection due to their tissue 
reparative and immune-suppressive properties, AMs can 
also be detrimental to directly (via their own production 
of inflammatory cytokines) or indirectly (via recruitment 
of other inflammatory cells) contribute to pulmonary 
inflammation during respiratory viral infection. Consist-
ently, Grant showed that a small proportion of AMs can 
be infected with SARS-CoV-2, resulting in T-cell recruit-
ment, which is required for the feedback loop driving the 
inflammatory response (Grant et al. 2021). Therefore, the 
protective versus beneficial function of AMs is largely 
context- and factor-dependent after respiratory viral 
infection.

PPAR-γ is considered a master regulator of AM dif-
ferentiation and maturation, as its deficiency in CD11c+ 
myeloid cells leads to AM pool impairment (Schneider 
et al. 2014b). Additionally, deficiency of PPAR-γ in AMs 
showed enhanced inflammation and associated morbid-
ity following IAV and respiratory syncytial virus (RSV) 
infection (Huang et  al. 2019b; Schneider et  al. 2014a), 
suggesting that PPAR-γ promotes reparative function 
and limits inflammation in AMs. In contrast, deletion 
of transcription factors such as β (beta)-catenin and 
hypoxia-inducible factor 1 subunit alpha (HIF1A) can 
lead to diminished inflammation and enhance lung repair 
(Zhu et  al. 2021). Hence, it is strongly suggested that 
these transcription factors play a critical role in defining 
AMs functions during viral infection, resulting in either 
host protection or disease exacerbation. Recently, it was 
demonstrated that the neonatal neutrophil-derived eicos-
anoid 12-HETE is required for AMs imprinting (Pernet 
et  al. 2023). Furthermore, genetic deletion of 2-lipoxy-
genase and 15-lipoxygenase in mice results in defects in 
AMs, which further leads to increased susceptibility to 
respiratory viruses such as influenza and SARS-CoV-2 
(Pernet et al. 2023).

AMs have intrinsic self-renewable and niche occu-
pancy properties that are further regulated by the lung 
microenvironment (Li et  al. 2022). During severe res-
piratory viral infections, including COVID-19, AMs are 
partially depleted due to increased AM death and/or the 
inhibition of AM self-renewal by infection-induced Wnt 
ligands (Zhu et al. 2021). Interestingly, Wnt ligands also 
promoted AM inflammatory cytokine production, sug-
gesting that Wnt-β-catenin signaling uncouples AM 
inflammatory activities with their self-renewal ability 
(Zhu et al. 2021). During the resolution of viral inflamma-
tion, AMs regain their self-renewal ability and prolifer-
ate to repopulate the AM pool. Two recent studies using 
parabiosis and bone marrow transfer have demonstrated 
that AM proliferation is probably the major contributor 
to the early reconstitution of the depleted AM pool after 
influenza infection (Li et al. 2022; Zhu et al. 2021). AM 
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loss during influenza infection is accompanied by the 
influx of  Ly6chi monocytes after influenza infection (Li 
et al. 2022).

Notably, the replenished AMs after the resolution of 
the primary infection are phenotypically, transcription-
ally, and epigenetically different than those AMs before 
infection. Studies have found that AMs exhibit height-
ened expression of inflammatory molecules and are 
epigenetically primed for the elevated re-expression of 
those molecules upon stimulation (Wang et al. 2023; Yao 
et al. 2018; Aegerter et al. 2020). These macrophages are 
termed “trained” macrophages, as they acquire immu-
nological imprinting of previous challenges and result 
in increased responsiveness to secondary challenges 
(Zahalka et  al. 2022). Both resident AMs and recruited 
monocyte-derived AMs may exhibit “training” properties 
after infection, leading to increased antipathogen and/or 
antitumor activities by AMs after primary viral infection 
(Wang et al. 2023; Yao et al. 2018; Aegerter et al. 2020). 
Nevertheless, trained immunity in AM is still an under-
explored theme, and the functions of “trained” AMs may 
vary under different disease settings and lung microenvi-
ronments. Hence, it is critical to examine the role of AM 
training in the context of viral infection, which may hold 
the key to acquiring immune memory in a variety of lung 
diseases.

IMs in viral infection
IMs are named due to their anatomical residence in the 
interstitial tissue, where they act as gatekeepers of the 
vasculature and lung interstitium (Duan et al. 2017; Bain 
and MacDonald 2022). Phenotypically, IMs are classified 
as Siglec  Flow and  CD11clow populations but express high 
CD11b in mice (Duan et al. 2017). Similar to AMs, these 
IMs express other prominent macrophage markers, such 
as CD64, MertK, and CD68 (Gautier et al. 2012). Addi-
tionally, IMs are significantly outnumbered by AMs in 
the lungs of mice; hence, these immune populations are 
poorly studied due to their anatomical niche and lower 
proportions compared to AMs. Nevertheless, some stud-
ies have shown the developmental origin of these unique 
pulmonary macrophage subsets in human and mouse 
lungs. In mice, IMs are subdivided into two classes: 
 Lyve1lowMHCIIhi and  Lyve1hiMHCIIlow macrophages 
(Chakarov et  al. 2019). In humans, IMs are classified as 
 CD45+CD11b+  CD64+CD14+CD16− macrophages, 
which are further divided into two populations. One 
of the subsets is characterized by high CD11b expres-
sion, while another subset is defined by markers such as 
CD169, CD206, and Lyve1 (Chakarov et al. 2019). Addi-
tionally, human IMs exhibit some transcriptional resem-
blance to murine  Lyve1lowMHCIIhi and  Lyve1hiMHCIIlow 
macrophages (Chakarov et  al. 2019). However, unlike 

murine IMs, human IMs express high MHCII and 
CX3CR1 in  Lyve1+ IM (Chakarov et  al. 2019). In addi-
tion, both human and murine lung IMs have a common 
feature of expressing the immunosuppressive cytokine 
IL-10 in the steady state (Liegeois et  al. 2018), suggest-
ing some degree of similarity between human and mouse 
lung macrophages.

IMs developmentally originate from yolk sac mac-
rophages and fetal monocytes (Guilliams et  al. 2013). 
Then, IMs either self-replenish or are gradually replaced 
by  CCR2+ monocytes to a different extent according to 
the IM subtypes (Aegerter et al. 2022; Sabatel et al. 2017). 
Recent scRNA-seq analysis of murine lungs revealed 
distinct IM populations. Chakarov et  al. defined these 
IMs as two distinct populations:  Lyve1lowMHCIIhi and 
 Lyve1hiMHCIIlow macrophages (Chakarov et  al. 2019). 
Although both IM subsets have antigen presentation 
ability,  Lyve1lowMHCIIhi IMs are more capable of antigen 
presentation and can stimulate  CD4+ T-cell proliferation 
than  Lyve1hiMHCIIlow IMs.  Lyve1hiMHCIIlow subsets 
are more enriched in the expression of genes related to 
wound healing and fibrosis (Chakarov et al. 2019). How-
ever, Gibbings et al. categorized IMs into three subtypes 
based on their expression levels of CD11c and MHCII: 
IM1  (CD11clowMHCIIlow), IM2  (CD11clowMHCIIhi 
(IM2), and IM3  (CD11c+MHCIIhi). Transcriptionally, 
IMs and AMs both have macrophage signatures, but 
these cell types are distinct from each other. IMs were 
found to have higher expression of monocyte-related 
genes than AMs, suggesting that IMs are derived from 
monocytes (Gibbings et al. 2017; Larson et al. 2016).

The responses of IMs after microbial infection are 
currently poorly defined. Interestingly, local installa-
tion of TLR1/2, TLR4, and TLR9 ligands results in the 
expansion of murine IM subsets (Schyns et  al. 2019). 
The TLR4-driven expansion of the IM was halted in 
Ccr2−/− mice, but intriguingly, there was a nonsignificant 
decrease in CpG-treated mice, thereby suggesting bone 
marrow-independent recruitment. These studies indi-
cated inflammation-driven IM expansion. However, it 
is still not clear whether viral antigens can also drive IM 
expansion. Nevertheless, TLR2-dependent sensing of the 
E protein of SARS-CoV-2 and the subsequent inflamma-
tory response have been documented (Zheng et al. 2021). 
It will be interesting to examine whether there is similar 
IM expansion in cases of viral infection or viral protein 
stimulation as in cases of bacterial infection.

After lung insult, a transitional macrophage state is 
identified that has shared gene expression of both alve-
olar and interstitial macrophages in the fibrotic mouse 
model. This transition state is inclined toward alveolar 
macrophage gene expression, suggesting that during lung 
injury, some proportions of IM are later differentiated 
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into the resident AM population (Aran et al. 2019). This 
could be largely attributed to the influence of the lung 
microenvironment and growth factors. However, it is still 
unknown whether this transitional IM state is found dur-
ing viral resolution.

Another type of IM resides around the large bron-
chiolar airways adjacent to airway-associated nerves 
and hence was named nerve-associated macrophages 
(NAMs) (Ural et  al. 2020), which likely represent the 
 Lyvelow  MHCIIhi IM populations identified previously 
(Chakarov et al. 2019). NAMs have self-renewing capac-
ity but differ from AM morphologically, having more 
elongated and dendritic cell-like appendages. Further-
more, specific NAM-depleted mice challenged with 
influenza showed increased morbidity compared to wild-
type mice. Additionally, NAM-depleted mice can support 
inflammation after polyinosinic-polycytidylic acid (poly 
IC), as shown by increased proinflammatory cytokine 
IL-6 and chemokines such as CCL2, CCL3, and CCL5 
(Ural et al. 2020). Intriguingly, the NAM population was 
unchanged in Ccr2−/− mice treated with poly IC, sug-
gesting that NAM can be locally maintained (Ural et al. 
2020).

Not much is known about IMs in the context of SARS-
CoV-2; however, a recent preprint study suggested that 
in ex-vivo cultured human lungs, there are three distinct 
clusters of macrophages, viz., AMs, IMs and activated 
IMs, following SARS-CoV-2 infection. These activated 
IMs differ from the other two populations in terms of 
increased genes related to nuclear factor-κB (NF-κB), 
inflammation, and hypoxia-induced factors (Wu et  al. 
2022). Furthermore, there was striking viral accumula-
tion in these activated IMs compared to AMs, which 
resulted in the induction of a high degree of cytokine and 
chemokine expression (Wu et al. 2022). Previously, it was 
known that alveolar macrophages can be infected with 
SARS-CoV-2, which amplifies the inflammatory response 
via T-cell activation (Grant et al. 2021). However, infected 
IMs show more robust hijacking of transcriptomes lead-
ing to inflammatory signatures, which also supports viral 
replication (Wu et al. 2022).

Monocytes and monocyte‑derived macrophages 
in viral infection
After the onset of respiratory viral infection, there is a 
high degree of inflammation followed by infiltration of 
monocytes into the lungs (Li et al. 2022). These recruited 
monocytes eventually fill the void created by the defi-
ciency of tissue-resident macrophages at the site of infec-
tion (Li et  al. 2022). These recruited  Ly6C+ monocytes 
can then differentiate into macrophages, which further 
orchestrate local inflammation (McQuattie-Pimentel 
et  al. 2018; Li et  al. 2022). In the case of IAV infection, 

type I (IFNα/β) and type II (IFN-γ) IFNs appear to reg-
ulate the recruitment of monocytes and promote an 
inflammatory phenotype in monocytes (Schmit et  al. 
2022). Accumulation of pulmonary  CCR2+  inflamma-
tory monocytes and monocyte-derived macrophages is 
a hallmark of severe respiratory viral infection, includ-
ing influenza and severe COVID-19 (Alon et  al. 2021) 
(Wei et  al. 2023). Recruited monocytes can be stimu-
lated by a variety of viral or host factors, including IFNs, 
to drive excessive pulmonary inflammation and tissue 
injury. Interestingly, it was shown that SARS-CoV-2-in-
fected epithelial cells cocultured with monocytes have 
a more robust and distinct inflammatory response than 
those infected with IAV (Leon et al. 2022). Cytokines and 
chemokines such as TNF, IL1B, CCL3, IL10 and IFN-
responsive genes were specifically enriched in SARS-
CoV-2 compared to IAV coculture infection (Leon et al. 
2022). Similarly, SARS-CoV-2 infection in monocytes 
can also trigger more elevated profibrotic signatures in 
monocytes than in IAV-infected monocytes (Wendisch 
et al. 2021). Monocytes in COVID-19 undergo pyroptosis 
due to NLR family pyrin domain containing 3 (NLRP3), 
absent in melanoma 2 (AIM2), caspase-1, and gasdermin 
D activation. These pyroptotic events occur because of 
the direct infection of monocytes, which is quite intrigu-
ing, as monocytes do not express ACE2 receptors. It was 
further demonstrated that monocytes express Fcγ recep-
tors that recognize antibody-opsonized SARS-CoV-2, 
which promotes monocyte infection (Junqueira et  al. 
2022).

As inflammation resolves, these macrophages are rap-
idly depleted from the air spaces, mediated by apopto-
sis (Janssen et  al. 2011), and tissue-resident AMs again 
repopulate the lung (Li et  al. 2022), most likely by vir-
tue of their self-renewal property and/or newly derived 
macrophages from monocytes. Monocyte-derived AMs 
represent a major AM population after 3  weeks postin-
fluenza infection but not early during infection (within 
2  weeks), likely due to the time needed for monocyte 
maturation into AMs (Li et  al. 2022; Zhu et  al. 2021). 
Few of the monocyte-derived macrophages that survive 
weeks after disease resolution coexist within these AM 
populations and eventually acquire a bona fide AM-like 
phenotype (Gibbings et al. 2015; Li et al. 2022). This fea-
ture of adopting an AM-like phenotype after disease res-
olution is also shared by IMs, and hence, it is anticipated 
that IMs and recruited monocyte-derived macrophages 
are highly plastic in nature. Furthermore, the lung micro-
environment also plays a decisive role in guiding the ter-
minal differentiation of these macrophages into resident 
AMs (Bain and MacDonald 2022).

Interestingly, recruited monocyte-derived mac-
rophages may contribute to the development of chronic 
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lung pathology and tissue fibrosis after viral pneumo-
nia, including influenza and SARS-CoV-2 (Misharin 
et  al. 2017; Cui et  al. 2023; Narasimhan et  al. 2022; 
Huang et  al. 2019a). A recent study has shown that 
IL-6 and CD47 expressed by monocyte-derived mac-
rophages are key factors that lead to sustained inflam-
mation and fibrosis progression in long COVID (Cui 
et  al. 2023). Taken together, these studies suggest that 
monocyte-derived macrophages play a major role in 
initiating and sustaining inflammation together with 
the adoption of profibrotic features in respiratory viral 
infections. Targeting these inflammatory/profibrotic 
programs may be helpful in the management of the 
severity of acute or chronic viral infection.

Conclusion
In respiratory viral diseases, resident AMs, IMs, or 
recruited monocytes and macrophages were suggested 
to have a pro-host or pro-viral response depending on 
their origin, phenotypes, timing, and type of infection 
being evaluated (Arish et  al. 2023; Wei et  al. 2023). 
However, it is broadly considered that resident AMs 
and IMs are mostly beneficial (Pernet et al. 2023), while 
recruited monocytes and macrophages are mainly det-
rimental to the host (Li et  al. 2022; Wu et  al. 2022). 
These contrasting characteristics in almost the same 
immune cell type in a similar anatomical niche are con-
sidered to be due to the imprinting of regulatory genes 
because of the different ontogeny of these immune 
cells (McCowan et al. 2021; Pernet et al. 2023). There-
fore, it is necessary to identify those critical regulatory 
genes, transcription factors, or modulatory factors that 
can dictate the function of these macrophage subsets 
in diseased conditions (Arish and Naz 2022). Identify-
ing these factors may be helpful to provide important 
insights into pulmonary macrophage biology in homeo-
stasis or disease but also pave the way for macrophage-
targeted therapies, in which macrophages could be 
re-educated to acquire anti-pathogen, immunomodu-
latory or tissue-reparative characteristics for viral 
resolution.
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