Weng Animal Diseases (2024) 4:18
https://doi.org/10.1186/544149-024-00123-0

REVIEW

Current research progress on the viral

Open Access

=

Check for
updates

immune evasion mechanisms of African swine

fever

Changjiang Weng'?*

Abstract

African swine fever (ASF), caused by the ASF virus (ASFV), is an acute, severe, and highly contagious infectious disease
in domestic pigs and wild boars. Domestic pigs infected with a virulent ASFV strain can have morbidity and mortality
rates of up to 100%. The epidemic of ASF has caused serious economic losses to the global pig industry. Currently,
there is no safe and effective vaccine or specific drug for treating ASF. Therefore, ASFV still poses a great threat to pig
factories. ASFV is a double-stranded DNA virus with a complex icosahedral multilayer structure. The ASFV genome
contains 150-170 open reading frames (ORFs) that encode 150-200 proteins. Some ASFV-encoded proteins are
involved in virus invasion, genome replication, DNA repair, and virion formation. Some ASFV proteins execute immu-
nomodulatory functions by regulating the host antiviral innate immune response. Accumulating studies have shown
that the immunomodulatory functions of ASFV genes are closely related to the virulence and pathogenicity of ASFV
isolates. This review summarizes the research advances on ASFV immune evasion mechanisms in African swine fever
patients and provides new insights for developing attenuated live vaccine candidates to prevent and control ASF.
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Introduction

African swine fever (ASF) is a virulent, hemorrhagic
infectious disease caused by African swine fever virus
(ASFEV), which infects farmed pigs and wild boars. ASFV
is characterized by very high lethality; domestic pigs
infected with virulent ASFV strains have a mortality rate
as high as 100% (Schafer et al. 2022). According to the
official website of the World Organization for Animal
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Health (WOAH), a total of 5,882 cases of ASF, including
4,218 cases involving wild boar, occurred in 26 countries
in 2023. In addition, 422,500 live pigs were slaughtered,
demonstrating the difficulty of preventing and controlling
ASF outbreaks. The global pig industry is currently facing
major ASF issues due to a lack of safe and effective vac-
cines and commercial treatments. ASF is characterized
by different clinical manifestations, including peracute/
hyperacute, acute, subacute, and chronic manifestations
(Tulman et al. 2009; Gallardo et al. 2018), which depend
not only on the genetic background of the ASFV isolates
but also on the genetic background of the host (Walczak
et al. 2020).

African swine fever virus (ASFV) is a large enveloped
double-stranded DNA (dsDNA) virus and the sole mem-
ber of the Asfarviridae family that belongs to the cate-
gory of nucleocytoplasmic large DNA viruses (NCLDVs)
(Karki et al. 2021). ASFV particles are composed of
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complex, multilayered structures consisting of a genome-
containing nucleoid, a core shell with thick proteins, an
inner lipid envelope, a capsid, and an external envelope
from the inside out (Wang et al. 2019). Mature virions
acquire an external lipid envelope by budding through the
plasma membrane. The ASFV genome varies in length
from 170 to 194 kb and contains 150-170 open reading
frames (ORFs), which encode more than 150 proteins in
ASFV-infected cells (Perez-Nunez et al. 2019). The main
functions of ASFV-encoded proteins include the regula-
tion of viral replication (Dixon et al. 2013; Simoes et al.
2019; Urbano and Ferreira 2020), DNA repair (Maciejew-
ski et al. 2001; Lamarche et al. 2005; Lamarche et al. 2006;
Sampoli Benitez et al. 2008; Redrejo-Rodriguez et al.
2013), transcription (Rodriguez and Salas 2013; Cackett
et al. 2020), virus assembly (Wang et al. 2019; Heath et al.
2001; Zhou et al. 2022a), and immune evasion (Correia
et al. 2013; Dixon et al. 2019; He et al. 2022). The activi-
ties of approximately half of the ASFV genes are cur-
rently unknown and require further investigation.

ASFV infects porcine alveolar macrophages (PAMs)
and mononuclear macrophages, which include particular
tissue macrophages and reticular epithelial cell lineages
(Pan et al. 1988). Previous studies have shown that ASFV
can enter target cells by interacting with receptors on the
cell membrane (Galindo et al. 1997), a process that is also
associated with clathrin-mediated endocytosis (Chen
et al. 2023a) or macropinocytosis. Then, the inner viral
envelope fuses with the secondary endosome, and the
viral genome is released into the cytoplasm (Matamoros
et al. 2020).

Recently, several ASFV proteins have been confirmed
to be multifunctional proteins (Zhou et al. 2022a; Huang
et al. 2023a; Ye et al. 2023; Li et al. 2021a; Li et al. 2021b).
These compounds exhibit immunomodulatory effects,
which are critical for viral immune evasion and ASFV
pathogenicity. Notably, the pathogenicity of ASFV is
related to virulence-related genes that regulate the NF-xB
signaling pathway (Silk et al. 2007), host innate immune
responses (including interferon (IFN) production, the
IEN-JAK-STAT signaling pathway, and inflammatory
responses) (Correia et al. 2013; Razzuoli et al. 2020),
cell death (apoptosis, necrosis, and pyroptosis) (Dixon
et al. 2017; Galindo et al. 2008), and autophagy (Banjara
et al. 2019; Hernaez et al. 2013). In this review, we sum-
marize the research advances on ASFV immune evasion
mechanisms in African swine fever patients (Table 1). As
a result, it is critical to screen for and discover virulence-
related ASFV genes, as well as to understand their patho-
genic pathways in ASFV-infected pigs, as this will provide
vital insights into developing safer and more effective
vaccines for preventing and managing ASF illnesses.
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The first ASF case in China was reported in August
2018. Zhao identified an ASFV strain from diseased pigs
in Heilongjiang Province, China, and named it ASFV Pig/
HLJ/18. ASFV Pig/HL]J/18 belongs to genotype II, and its
genome sequence is similar to that of ASFV Poland 2017.
Pig/HLJ/18 is highly virulent in pigs, is efficiently trans-
missible, and causes acute disease characterized by fever
and hemorrhagic signs (Zhao et al. 2019). We evaluated
the transcriptome and proteome of PAMs infected with
ASFV Pig/HL]J/18 and discovered that 187 viral proteins
were expressed in ASFV HL]J/18-infected PAMs (data not
shown).

Zhao investigated the genomes of 22 ASFV strains
obtained in seven regions of China in 2020 (Sun et al.
2021a). Compared with Pig/HL]J/18, all 22 isolated ASFV
strains were characterized as genotype II, which contains
mutations, including deletions, insertions, or short-frag-
ment replacements. Half of these strains harbor a muta-
tion or deletion in the EP402R gene (encoding CD2v),
leading to the loss of hemadsorption. Virulence testing
in pigs revealed not only highly virulent isolates but also
less virulent natural mutants with high transmissibility
(Sun et al. 2021a).

Recently, genotype I ASFV strains have emerged in
China (Vallee et al. 2001). Two nonhemadsorption gen-
otype-I ASFV strains, HeN/ZZ-P1/21 and SD/DY-1/21,
were isolated from pig farms in Henan and Shandong
provinces, respectively. Unfortunately, researchers found
three recombinant ASFV strains of genotypes I and II in
Chinese pigs in 2023. These recombinant strains belong
to genotype I based on the B646L gene, even though they
contain 10 distinct fragments from the genotype II virus
(Gomez-Villamandos et al. 1995). Among them, one of
the recombinant viruses has high lethality and trans-
mission in pigs. Deletion of the virulence-related genes
MGF505/360 and EP402R reduced its virulence. Notably,
the live attenuated vaccine ASFV-7GD, derived from the
genotype II ASFV Pig/HLJ/18 strain, could not protect
against challenge with the recombinant virus. These find-
ings indicate that the use of recombinant ASFV strains of
genotypes I and II represents considerable hurdles to the
early detection, prevention, and control of ASF in China.

ASFV infection evades host antiviralimmune responses
Genome-wide transcriptomic analysis of highly virulent
ASFV infection revealed that ASFV infection has sig-
nificant effects on various biological processes, such as
innate immunity, the inflammatory response, apoptosis,
and autophagy (Cackett et al. 2020; Ramiro-Ibanez et al.
1996; Quarleri et al. 2021; Hernaez et al. 2004), suggest-
ing that ASFV infection may evade host antiviral immune
responses by targeting these pathways.
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ASFV infection regulates cell death

Apoptosis is also known as programmed cell death
(PCD). ASFV-infected tissues exhibit significant dam-
age, accompanied by a substantial number of apoptotic
cells (Li et al. 2021c; Brun et al. 1996; Nogal et al. 2001).
In ASFV-infected pigs, ASFV can replicate in fibroblasts,
smooth muscle cells, and endothelial cells in interstitial
tissues (Brun et al. 1996). ASFV promotes viral replica-
tion and the spread of progeny viruses by regulating
apoptosis (Neilan et al. 1997a). Some ASFV proteins
have been confirmed to participate in regulating apop-
tosis (Fig. 1). For example, p54 (Chaulagain et al. 2021)
and pE199L (Huang et al. 2023b) can induce apoptosis,
whereas pA179L (Galindo et al. 2008; Gao et al. 2023)
and pA224L (Revilla et al. 1997; Rodriguez et al. 2002)
have significant inhibitory effects on apoptosis (Dixon
et al. 2017).

Recently, the CD2v protein was found to induce apop-
tosis in swine PBMCs and macrophages (Hurtado et al.
2004). Consistent with these results, Wuang reported that
the virulence and pathogenicity of mutant ASFV strains
are reduced in pigs when ASFV-AEP402R-infected pigs
are used as a model (Wang et al. 2014). However, CD2v
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Fig. 1 ASFV-encoded proteins regulate apoptosis
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was identified as an apoptosis inhibitor that functions by
interacting with CSF2RA to regulate the JAK2-STAT3
pathway (Zhou et al. 2018). The causes for the discrep-
ancies between these data are unknown and will require
additional examination.

ASFV-encoded proteins induce apoptosis

The ASFV EI83L gene encodes the membrane protein
ASFV p54, which is largely involved in viral invasion,
adhesion, and virion assembly (Galindo et al. 2012).
Overexpression of p54 promotes apoptosis. The sequence
of the 13-amino acid domain within p54 is similar to
that of the BH3 domain of the pro-apoptotic protein
Bim. ASFV p54 loses its ability to induce apoptosis with-
out this domain (Chaulagain et al. 2021). ASFV pE199L,
which localizes to the inner viral envelope, also plays a
role in membrane fusion and core penetration (Matam-
oros et al. 2020). Recently, Li discovered that the over-
expression of pE199L promotes mitochondria-mediated
cell death by reducing the mitochondrial membrane
potential, leading to cytochrome C release and the acti-
vation of apoptosis-related caspase-9 and caspase-3/7
(Huang et al. 2023b).
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ASFV-encoded proteins inhibit apoptosis

The ASFV A179L gene encodes a viral homolog of human
Bcl-2, which contains four conserved domains (BH1,
BH2, BH3 and BH4) (Dixon et al. 2017). pA179L is highly
conserved and is expressed early and late during ASFV
infection. pA179L mainly localizes to the mitochondria
or endoplasmic reticulum (ER). Moreover, pA179L has
antiapoptotic effects. Overexpression of pAl179L can
inhibit various types of stimulus-induced apoptosis (Por-
tugal et al. 2018). To suppress apoptosis, pA179L forms
heterodimers with pro-apoptotic proteins from the Bcl-2
family, including Bid, Bad, Bmf, Bik and Bim (Galindo
et al. 2008).

ASFV pA224L belongs to the family of inhibitors of
apoptosis proteins (IAPs) (Rodriguez et al. 2002). Previ-
ous studies have shown that pA224L inhibits TNF-a-
induced caspase-3 activation and apoptosis (Revilla et al.
1997). Overexpression of pA224L activates the NF-kB
signaling pathway, thereby inhibiting apoptosis and pro-
moting viral proliferation by activating the transcription
of a large number of antiapoptotic genes, including IAPs
and Bcl-2 family members (Golding et al. 2016). Infec-
tion with the ASFV strain with a deletion of the A224L
gene (ASFV-AA2241) activates caspase-3 in Vero cells.
However, ASFV-AA224L replication in macrophages and
pathogenicity in pigs do not decrease (Revilla et al. 1997).

ASFV pEP153R is similar to the N-terminal domains of
certain C-type lectin molecules. PEP153R is a multifunc-
tional protein that inhibits the expression of MHC-I mol-
ecules and prevents staurosporine-induced apoptosis or
viral infection by blocking p53 protein activation (Frac-
zyk et al. 2016). Infection with the ASFV BA71V strain
lacking the EP153R gene (ASFV-AEP153R) activates cas-
pase-3, thereby inducing cell death. Interestingly, ASFV-
AEP153R-infected cells lose the ability to adsorb red
blood cells, suggesting that pEP153R also participates in
the red blood cell adsorption process (Dixon et al. 2017).

ASFV pDP71L and pE66L inhibit ER stress-induced
apoptosis

The accumulation of unfolded proteins in the endoplas-
mic reticulum (ER) leads to ER stress (ERS) responses in
ASFV-infected cells. Persistent ERS activates the trans-
lation initiation factor 2a (elF2a)-ATF4-CHOP sign-
aling pathway, which triggers ERS-induced apoptosis
(Fan et al. 2020; Afonso et al. 2004). ASFV pDP71L can
recruit protein phosphatase 1 (PP1) to dephosphoryl-
ate elF2qa, limiting the activation of the elF2a-ATF4-
CHOP signaling cascade and increasing apoptosis and
viral growth (Ayanwale et al. 2022). ASFV infection also
induces the activation of caspase-12 and the upregulation
of calnexin and calreticulin. ASFV infection activates
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transcription factor 6 (ATF6) through unfolded protein
reactions (UPRs), and ATF6 prevents early apoptosis to
promote viral replication (Zsak et al. 2001). ASFV pE66L
was recently shown to decrease host protein translation,
which is associated with the PKR/elF2a signaling path-
way (O’Donnell et al. 2015).

ASFV infection regulates host innate immune responses
Compared to ASFV infection, herpes simplex virus 1
(HSV-1) infection causes greater type I IFN production.
Additionally, ASFV infection inhibits poly (I:C)-induced
type I IFN production (Li et al. 2021b) and inhibits IFN-
induced phosphorylation of STAT1 and STAT2 (Zhuo
et al. 2021). These data suggest that ASFV-encoded
proteins not only inhibit type I IFN production (Raz-
zuoli et al. 2020) but also suppress the activation of the
IFN-JAK-STAT signaling pathway, thereby inhibiting
the expression of IFN-stimulated genes (ISGs), result-
ing in the prevention of host antiviral effects (Zhang
et al. 2021a; Wang et al. 2021). Previous studies have
shown that porcine type I and II IFNs inhibit ASFV rep-
lication (Wang et al. 2018), while MGF360 and MGF505
inhibit type I IFN production and enhance host antiviral
responses (Zhu et al. 2023a).

ASFV-encoded proteins participate in regulating type | IFN
production

ASFV infects targeted cells and releases its genetic DNA.
Subsequently, the DNA sensor cGAS recognizes viral
DNA to synthesize ¢cGAMP, which then triggers the
translocation of stimulator of interferon genes (STING)
from the ER to the Golgi apparatus. Upon activation,
TBK1 phosphorylates IRF3, and the phosphorylated IRF3
then translocated to the nucleus to induce the produc-
tion of type I IFNs (He et al. 2022; O’Donnell et al. 2017).

The ASFV pMGF360 and pMGF505 members not only
determine the host range of virus infection (Abrams et al.
2013) but also inhibit the production of type I IEN (Zhu
et al. 2023a; Ramirez-Medina et al. 2023). Some mem-
bers of the MGF360 and MGF505 families are associated
with the virulence of ASFV. For example, pMGF360-15R/
pA276R inhibits the upregulated expression of type I
IEN stimulated by poly (I:C) but has no inhibitory effect
on the JAK-STAT pathway or NF-xB signaling path-
way induced by type I and II IFNs (Zhang et al. 2021a).
pPMGF505-7R/pA528R reduces type I IFN production
by suppressing IRF3 and NF-«B transcription factors
(Zhang et al. 2021a).

Recent research has suggested that certain MGF mem-
bers can decrease IFN production by targeting criti-
cal molecules in the cGAS-STING signaling pathway.
For example, pMGF505-7R was found to promote the
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expression of the autophagy-related protein ULK1, which
leads to STING degradation. In addition, pMGF505-7R
also inhibits type I IEN production by interacting with
IRF3 to inhibit its nuclear translocation (Li et al. 2021b).
pMGF360-12 L disrupts the nuclear translocation of
NF-xB by blocking the interaction between importin
a and NF-kB (Andres et al. 2001), while pMGF505-11R
inhibits IFN-B, ISG15, and ISG56 transcription by inhib-
iting ¢cGAS-, STING- and TBK1-induced activation of
IFN and ISRE (Alfonso et al. 2007). pMGF505-11R inter-
acts with STING and degrades it through various path-
ways, including lysosomes, ubiquitination proteasomes,
and autophagy, such as lysosomes, ubiquitination protea-
somes, and autophagy (Alfonso et al. 2007). Furthermore,
pMGF505-11R and pMGF360-14 L inhibit type I IFN
signaling by targeting IRF3, which is activated by cGAS/
STING (Alfonso et al. 2007; Sun et al. 2022a).

In addition to MGF members, additional ASFV-
encoded proteins also limit type I IFN production. Previ-
ous studies have shown that pDP96R (Hong et al. 2022),
pE184L (Li et al. 2023), and pH 240 L (Ye et al. 2023)
inhibit the cGAS-STING-TBK1 axis, thereby nega-
tively regulating the production of type I IEN. Consist-
ent with these results, the three ASFV-encoded proteins
pDP96R (Cui et al. 2022; Cheng et al. 2023), pE184L (Li
et al. 2023), and pH 240R (Dodantenna et al. 2022) are
virulence-related factors. ASFV pEI120R is a structural
protein involved in transporting ASFV particles from the
assembly site to the plasma membrane and in the trans-
mission of ASFV (Netherton et al. 2009). A recent study
revealed that pE120R suppresses the TBK1-IRF3 inter-
action by binding to IRF3, resulting in decreased IRF3
phosphorylation and IFNf production (Munoz-Moreno
et al. 2016).

ASFV pI329L is a homolog of a protein from the Toll-
like receptor (TLR) family that is heavily glycosylated
and expressed on the cell membrane. ASFV pI329L
antagonizes host innate immune responses activated by
TLR3 (Riera et al. 2021) by inhibiting Toll/IL-1 receptor
domain-containing adaptor (TRIF)-induced IFN-$ pro-
duction. Overexpression of TRIF can reverse the inhibi-
tion caused by pI329L (Franzoni et al. 2020).

Unbiased screening revealed that four ASFV proteins
(pI215L, pE301R, pD345R, and pS273R) strongly sup-
pressed cGAS-STING-induced IFN production. ASFV
pI215L is a ubiquitin-binding enzyme that is essential for
viral infection and replication (Zhang et al. 2022). ASFV
pI215L recruits RNF138 to degrade RNF128, which
inhibits the K63 ubiquitination of TBK1 by RNF128
(Li et al. 2023). ASFV pE301R interacts with IRF3 and
prevents IRF3 translocation mediated by cGAMP and
poly(I:C), hence limiting the generation of type I IFN
(Borca et al. 1994). pS273R disrupts the interaction
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between IKKe and STING by interacting with IKKe,
thus inhibiting IFN production (Ye et al. 2024). Recently,
pA137R (Granja et al. 2006), pI226R (Neilan et al. 1997b;
Chen et al. 2023b), pM1249L (Wang et al. 2023a), pL83L
(Chen et al. 2023), pEP364R (Zhu et al. 2023b), and
pCI129R (Zhu et al. 2023b) were also found to inhibit
type I IEN production by targeting key molecules in the
cGAS-STING-mediated signaling pathway. Additionally,
host DNA-directed RNA polymerase III (Pol-III) was
found to recognize AT-rich regions of the ASFV genome,
leading to viral RNA sensor RIG-I-mediated innate
immune responses. pI267L interacts with Riplet and dis-
rupts the Riplet-RIG-I connection, affecting Riplet-medi-
ated K63 polyubiquitination and RIG-I activation (Neilan
etal. 1999).

ASFV-encoded proteins regulate the IFN-JAK-STAT1
signaling pathway to inhibit the expression of ISGs

The released IFN interacts with interferon receptors
(IFNAR1/2) and activates the kinases JAK and TYK2.
Subsequently, STAT1 is phosphorylated to form the
ISGF3 complex. The ISGF3 complex enters the nucleus
to induce ISGs to combat viral infections. The ISG-
encoded MxA (Gladue et al. 2021) and IFITM proteins
(Zhang et al. 2021b) have anti-ASFV functions. Dur-
ing the ASFV evaluation process, ASFV antagonizes the
IFN-mediated JAK-STAT signaling pathway to inhibit
the expression of ISGs (Fig. 2). For example, ASFV infec-
tion impairs the nuclear translocation of ISGF3 by lead-
ing to proteasome-dependent degradation of STAT2 and
caspase-3-dependent cleavage of STAT1 (Alcami et al.
1993). Notably, compared with PAMs infected with wild-
type ASEV (ASFV-WT), PAMs infected with ASFV-
AMGF505-7R produced relatively high levels of ISGs (Li
et al. 2021b). ASFV recombinant strains in which one or
more genes from the MGF360 and MGF505 families were
knocked out were more responsive to IFN than their par-
ent viruses (Zhang et al. 2021a; Liu et al. 2023).

Several studies have shown that numerous MGF family
members negatively affect the IFN-JAK-STAT signaling
pathway. MGF360-9 L inhibits the expression of antivi-
ral genes by interacting with STAT1/2 and promoting
their degradation. Consistent with these results, the rep-
lication capacity of ASFV-AMGF360-9 L is reduced in
PAMs, and its virulence in pigs is also reduced (Sun et al.
2022b). Li et al. reported that ASFV pMGF-360-10 L sig-
nificantly inhibits the activation of the IFNB promoter
reporter and the production of ISGs. Compared with
those in the parental ASFV CN/GS/2018 strain, more
ISGs are induced to inhibit viral replication in ASFV-
AMGF360-10 L-infected PAMs (Tran et al. 2022a).
PMGF360-10 L mediates the K48-linked ubiquitination
of JAK1 by recruiting HECT and RLD domain-containing
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Fig. 2 ASFV-encoded proteins inhibit interferon production and the JAK-STAT signaling pathway

E3 ubiquitin protein ligase 5 (HERC5) (Tran et al. 2022a).
pMGEF505-7R inhibits the IFN-JAK-STAT signaling path-
way activated by IFN-y, promoting the degradation of
JAK1 and JAK2 by upregulating the E3 ubiquitin ligase
RNF125 and inhibiting Hse5 expression (Li et al. 2021a).
CD2 is a T lymphocyte surface adhesion receptor.
ASFV EP402R-encoded CD2v is a type I transmembrane
protein that is homologous to CD2 (Borca et al. 2023).
Compared with ASFV Pig/HLJ/18 infection, ASFV-
ACD2v infection induced higher levels of IFN and ISGs in
PAMs. Mechanistically, CD2v interacts with STING and
IRF3 to inhibit their nuclear translocation, thereby inhib-
iting type I IEN production. In addition, CD2v (Wang
et al. 2014) and pH 240R (Tran et al. 2022b) also inhibit
the IFN-JAK-STAT signaling pathway through their
interaction with IFNAR1 and IFNAR2, thereby inhibit-
ing host antiviral immune responses. Recently, a study
reported that pS273R interacts with STAT2 and recruits
the E3 ligase DCST1 to modify STAT2, thus promoting
the degradation of STAT?2 to inhibit IFN production and
ISG expression, which is independent of pS273R enzyme
activity (Chandana et al. 2024). In addition, pF778R is a

crucial subunit of ASFV ribonucleotide reductase. Chen
et al. reported that pF778R can impede IFN-JAK-STAT
signaling by weakening the nuclear accumulation of acti-
vated STAT1 (Rivera et al. 2007).

ASFV infection regulates inflammatory responses

ASFV infection regulates the NF-kB signaling pathway
Previous studies have shown that pA238L inhibits the
expression of proinflammatory cytokines by regulating
the transcriptional activities of NF-xB, NF-AT, and c-Jun
(Zhang et al. 2010). Consistently, A238L-deficient strain
(ASFV-AA238L)-infected pigs showed increased expres-
sion of TNFa. However, the replication capacity and
virulence of the ASFV-AA238L strain generated from the
Malawi Lil-20/1 strain did not significantly change com-
pared with those of the parental strain (Zsak et al. 1996).
The different backgrounds of ASFYV isolates could result
in conflicting data.

Recently, pI215L, pDP96R, and pF317L were found
to inhibit the activation of NF-«xB. For example, pI215L
inhibits the activation of NF-kB by preventing the entry
of p65 into the nucleus (Afonso et al. 1998), thereby
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inhibiting host protein synthesis (Qi et al. 2023). pDP96R
blocks IKKP-mediated NF-kB promoter activity (Hong
et al. 2022). pF317L interacts with IKKf and inhibits its
phosphorylation, which enhances the stability of IkBa.
The accumulation of IkBa prevents NF-kB activation.
Knocking down pF317L expression can enhance viral
replication (Reis et al. 2017). Ren reported that ectopi-
cally expressed pI10L significantly suppressed the acti-
vation of NF-«B signaling. Mechanistically, ASFV pI10L
inhibits IKKB phosphorylation by reducing the K63-
linked ubiquitination of NEMO, resulting in reduced
phosphorylation of IkBa and p65. In agreement with
these results, recombinant ASFV lacking the /10L gene
(ASFV-AI10L) induced higher levels of proinflammatory
cytokines in PAMs than did the parental ASFV HLJ/18
strain (Ran et al. 2022; Chen et al. 2020).

MGF members and pH 240R regulate NLRP3-dependent
inflammatory responses

ASFV infection does not induce severe inflammatory
responses or pyroptosis in PAMs. Recent studies have
shown that MGF members are involved in regulating
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inflammatory responses (Fig. 3). For example, the
MGF300-2R gene, which promotes IKKa and IKKp deg-
radation through the autophagy pathway, is critical for
viral replication in PAMs (Rathakrishnan et al. 2021).
Consistently, the viral titer of recombinant ASFV lacking
the MGF300-2R gene (ASFV-AMGF300-2R) decreased
by 1 log. Additionally, it induced greater interleukin
(IL)-1B and TNF« production in PAMs than did ASFV-
WT. Importantly, both the replication and virulence
of ASFV-AMGEF300-2R were significantly lower than
those of ASFV-WT in pigs (Rathakrishnan et al. 2021).
PMGF360-12 L could block NF-«kB activation induced
by ¢cGAS-STING, TBK1, and IKKp (Ran et al. 2022). In
addition, pMGF360-12 L interacts with KPNA2, KPNA3,
and KPNA4, inhibiting the interaction of p65 with these
three proteins, which consequently inhibits the nuclear
translocation of NF-xB (Andres et al. 2001).

ASFV pMGF505-7R and pH 240R interact with NLRP3
to inhibit ASC oligomerization, thereby inhibiting cas-
pase-1 activation and IL-1f secretion (Huang et al. 2023a;
Li et al. 2021b). Additionally, pMGF505-7R interacts with
IKKa in the IKK complex to inhibit the activation of
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NF-«B. Compared with those of the parental strains, the
levels of inflammatory cytokines and type I IEN produc-
tion in PAMs infected with ASFV-AMGEF505-7R were
greater. Animal experiments have shown that the replica-
tion level and pathogenicity of ASFV-AMGF505-7R are
reduced compared to those of its parental virus (Li et al.
2021b). Huang et al. reported that pH 240R interacts with
NEMO and disrupts the IKK complex, resulting in the
inhibition of NF-kB activation. pH 240R also interacts
with NLRP3, which inhibits the formation of the NLRP3
inflammasome, thereby reducing the production of IL-1f3
(Huang et al. 2023a).

During ASFV infection, activated caspase-1 specifi-
cally cleaves Gasdermin D (GSDMD), generating an
amino-terminal fragment of GSDMD (GSDMD-Nj ;)
(Neilan et al. 2002). Furthermore, ASFV pS273R cleaves
GSDMD-N; -4 to produce GSDMD-N, ,,, and GSDMD-
Nos.279 fragments, neither of which triggers pyroptosis.
These data suggest that ASFV pS273R negatively regu-
lates host antiviral inflammatory responses by cleaving
GSDMD to enhance virus replication (Neilan et al. 2002).

ASFV infection regulates autophagy

Previous research has indicated that ASFV infection
is linked to autophagy. Some ASFV-encoded proteins
may induce autophagy through various pathways. For
example, pA179L interacts with Beclin through its BH3
homology domain to inhibit autophagy, which may play
a role in blocking autophagy during ASFV infection
(Banjara et al. 2019; Hernaez et al. 2013). ASFV pE199L
induces complete autophagy by interacting with the
autophagy-associated protein PYCR2 and downregu-
lating its expression (Reis et al. 2016). ASFV pl7 pro-
motes mitophagy by enhancing the interaction between
SQSTM1 and TOM70 (Borca et al. 1998).

Strikingly, several ASFV-encoded proteins were found to
participate in regulating innate immune responses by pro-
moting autophagy-mediated degradation of key molecules
in the cGAS-STING signaling pathway. ASFV pMGF505-
7R inhibits type I IFN production by degrading STING
through autophagy (Li et al. 2021a). Recently, pMGF110-9
L (Monteagudo et al. 2017) and pA137R (Granja et al.
2006) were found to promote autophagy-mediated deg-
radation of TBK1, resulting in the inhibition of type I
IFN production. ASFV pL83L interacts with ¢cGAS and
STING, promoting autolysosomal-mediated degradation
of STING through Tollip recruitment, thereby reducing
the production of IFN-I (Chen et al. 2023).

Prospective

ASFV is challenging to control for a variety of reasons,
the primary one being our lack of understanding of
its epidemic features, infection, and immune evasion.
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Additionally, the pathogenesis and immune protection
mechanisms of ASFV are not well understood.

In the past 30 years, scientists have confirmed that
some ASFV genes that regulate host antiviral innate
immune responses are related to the virulence of ASFV
strains. Knocking out these genes does not affect the
replication ability of ASFV strains, but it reduces
the virulence of ASFV (Zhang et al. 2021a; Ramirez-
Medina et al. 2023; Rathakrishnan et al. 2022; Hu
et al. 2023). Immunizing pigs with these live attenu-
ated vaccine-candidate strains can provide partial or
complete protection (Monteagudo et al. 2017; Luo
et al. 2022). However, their safety, stability, and abil-
ity to generate cross-protection require further inves-
tigation. It is worth noting that pigs immunized with
a live attenuated vaccine are more difficult to detect
than those immunized with ASFV-WT. Therefore, the
virus can suddenly spread throughout the herd, which
has important effects on the reproductive performance
of sows. However, until recently, most scientists in the
ASFV field believed that live attenuated vaccines are
the most promising. Identifying and describing the
essential virulence-related genes will provide a theoret-
ical foundation for the safe and effective production of
live attenuated vaccines.

Accumulating evidence shows that the pathogenic-
ity of ASFV isolates is closely related to ASFV immu-
nomodulatory genes, the genetic background of these
ASFV isolates, and the feeding status of the animals.
Some viral genes determine virulence in a particular
strain, but knocking out these genes in another strain
may alter but not change the virulence of ASFV. There-
fore, the identification and confirmation of a key immu-
nomodulatory virulence gene should be considered
in the context of ASFV strains and other contributing
factors.
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