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Abstract 

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that can cause acute diarrhea 
and vomiting in newborn piglets and poses a potential risk for cross-species transmission. It is necessary to develop 
an effective serological diagnostic tool for the surveillance of PDCoV infection and vaccine immunity effects. In this 
study, we developed a monoclonal antibody-based competitive ELISA (cELISA) that selected the purified recombi-
nant PDCoV nucleocapsid (N) protein as the coating antigen to detect PDCoV antibodies. To evaluate the diagnos-
tic performance of the cELISA, 122 swine serum samples (39 positive and 83 negative) were tested and the results 
were compared with an indirect immunofluorescence assay (IFA) as the reference method. By receiver operating 
characteristic (ROC) curve analysis, the optimum cutoff value of percent inhibition (PI) was determined to be 26.8%, 
which showed excellent diagnostic performance, with an area under the curve (AUC) of 0.9919, a diagnostic sensitiv-
ity of 97.44% and a diagnostic specificity of 96.34%. Furthermore, there was good agreement between the cELISA 
and virus neutralization test (VNT) for the detection of PDCoV antibodies, with a coincidence rate of 92.7%, and the κ 
analysis showed almost perfect agreement (κ = 0.851). Overall, the established cELISA showed good diagnostic 
performance, including sensitivity, specificity and repeatability, and can be used for diagnostic assistance, evaluating 
the response to vaccination and assessing swine herd immunity.
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Introduction
Porcine deltacoronavirus (PDCoV) is an emerging 
swine enteropathogenic coronavirus known to induce 
acute diarrhea, vomiting and dehydration in newborn 
piglets (Wang et  al. 2022a; Xia et  al. 2023). It was first 
identified in Hong Kong in 2012 (Woo et  al. 2012) and 
has since spread rapidly to many countries, such as the 
United States (Wang et al. 2014a, b), Canada (Marthaler 
et  al. 2014), Thailand (Lorsirigool et  al. 2017), Vietnam 
(Saeng-Chuto et  al. 2017), Lao PDR (Lorsirigool et  al. 
2016), Japan (Suzuki et al. 2018) and Peru (More-Bayona 
et  al. 2022). PDCoV was first reported in pigs in main-
land China in 2014 (Zhao et al. 2017). Experiments have 
shown that PDCoV can infect calves, chickens, turkey 
poults and mice, suggesting a potential risk of cross-spe-
cies transmission (Duan 2021; Xia et  al. 2023). Moreo-
ver, three children were infected with PDCoV in Haiti 
(Lednicky et  al. 2021). The global spread of the PDCoV 
outbreak has inflicted, devastating economic losses, with 
mortality rates ranging from 30%-40% in the pig industry 
(Wang et al. 2023). Unfortunately, there are currently no 
effective drugs or commercial vaccines available to pre-
vent or control PDCoV infection (He et  al. 2023; Tang 
et al. 2021).

Currently, serological methods for detecting PDCoV 
antibodies have been established, including a virus neu-
tralization test (VNT), an indirect immunofluorescence 
assay (IFA) (Okda et  al. 2016), a fluorescent micro-
sphere immunoassay (FMIA) (Okda et  al. 2016), and 
various enzyme-linked immunosorbent assays (ELISAs) 
(Luo et al. 2017; Thachil et al. 2015; Wang et al. 2022b). 
ELISAs, which are commonly used for the serological 
diagnosis of many pathogens, are divided into indirect 
ELISA, sandwich ELISA, blocking ELISA, and com-
petitive ELISA (cELISA). The potential for cross-species 
transmission of PDCoV signifies its capacity to infect var-
ious animals, including humans. If indirect ELISAs are 
used to detect PDCoV antibodies in animal species other 
than pigs, horseradish peroxidase (HRP)-conjugated sec-
ondary antibodies must be matched to the species being 
tested. In addition, VNT, IFA and FMIA require cell cul-
ture and live virus for testing, thus limiting their applica-
tion in PDCoV serological investigations owing to their 
inability to process large-scale samples.

The main advantage of cELISA over indirect ELISA 
is that it does not necessitate the use of species-specific 
enzyme-conjugated antibodies, which is a requirement 
of indirect ELISA, underlining cELISA as an optimal tool 
for detecting antibodies from various species (Moreno 
et  al. 2019). This  cELISA relies on the use of a specific 
monoclonal antibody (mAb) against the targeted antigen 
so that only serum antibodies against the targeted anti-
gen can be recognized by the selected competitor mAb, 

specifically blocking the reaction between the targeted 
antigen and mAb. This study aimed to develop and vali-
date a monoclonal antibody (mAb)-based cELISA for the 
detection of anti-PDCoV antibodies in porcine serum 
to offer a convenient serological diagnostic tool for the 
surveillance of PDCoV infection and vaccine immunity 
effects.

Confirmation of the rPDCoV‑N protein, positive/negative 
reference serum and monoclonal antibody No.2
Purified rPDCoV-N proteins were acquired and identi-
fied by SDS‒PAGE, and the purity of the target protein 
exceeded 90% (data not shown). The IFA results revealed 
that the positive reference serum (1:800 dilution) and 
monoclonal antibody No.2 (mAb-2#) were specifically 
reactive to PDCoV (Fig. 1B&F), whereas the negative ref-
erence serum (1:20 dilution) did not react (Fig.  1D). In 
addition, our IFA and western blot results demonstrated 
that PDCoV mAb-2# does not cross-react with PEDV or 
TGEV (data not shown). These results indicated that pos-
itive/negative reference sera and mAb-2# are applicable 
for developing a diagnostic method to identify PDCoV 
antibodies.

Research has indicated that the S protein of SARS-
CoV-2 has a greater correlation with virus neutraliza-
tion assays than the N protein does (Jung et  al. 2021; 
Muecksch et al. 2021). Similar results have been reported 
in antibody detection assays for PEDV (Song et al. 2023) 
and SARS-CoV (Qiu et  al. 2005). As the N protein is 
highly conserved among different PDCoV isolates with 
few base mutations (Okda et al. 2016; Sun et al. 2022) and 
abundance in PDCoV-infected host cells (Lee and Lee 
2015; Okda et al. 2016), it was chosen as the diagnostic 
target for cELISA. Future studies will endeavor to express 
the S protein and develop a mAb-S-based competitive 
ELISA for detecting PDCoV antibodies.

Establishment of the cutoff value, diagnostic specificity 
and diagnostic sensitivity
The cELISA was optimized, and a panel of 122 pig serum 
samples (39 positive and 83 negative sera) was tested, with 
the PI values of each sample being calculated. ROC analysis 
was used to determine the cutoff value for defining posi-
tive and negative test outcomes, resulting in maximal diag-
nostic sensitivity and specificity of the assay (Fig. 2A). An 
interactive dot plot diagram displaying the PI values of the 
serum samples was also produced (Fig.  2B). The AUC of 
the established cELISA was 0.9919 (95% CI: 0.9811–1.003), 
indicating its high accuracy. In addition, a diagnostic sensi-
tivity of 97.44% (95% CI: 86.52% to 99.94%) and a diagnos-
tic specificity of 96.34% (95% CI: 89.68% to 99.24%) were 
achieved when the cutoff value was set to 26.8%. Therefore, 
samples with a PI value less than 26.8% were considered 
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negative, whereas samples with a PI value of 26.8% or 
greater were considered positive.

In the diagnosis of the 122 serum samples, cELISA dis-
played a diagnostic sensitivity of 97.44% (38/39) and a diag-
nostic specificity of 96.34% (80/83), which were slightly 
greater than those of the reference method (IFA). Thus, it 

is more suitable for wide use in PDCoV clinical diagnosis, 
especially in resource-limited diagnostic laboratories.

Determination of analytic sensitivity, specificity 
and repeatability of the competitive ELISA
Following the optimization of the cELISA, the ana-
lytic sensitivity was evaluated by the positive reference 

Fig. 1  IFA analysis of positive/negative reference serum and monoclonal antibody No.2. Positive reference serum (B) and monoclonal antibody 
No.2 (F) recognized the nucleocapsid protein in PDCoV-infected LLC-PK1 cells, while negative reference serum (D) did not react. Uninfected LLC-PK1 
cells (A, C and E) were used as a negative control. Serum +: positive reference serum; serum -:negative reference serum. The bars in A, B, C and D 
represent 100 μm, and the bars in E and F represent 50 μm
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serum, which had the highest serum dilution of 1:256 
(1:28) (Fig.  3A). Although this titer was slightly lower 
than the VNT titer of 29, cELISA proved to be more 
convenient as the VNT was excessively labor-intensive 
and impractical for the analysis of a large quantity of 
samples.

To evaluate the analytic specificity of the established 
cELISA, PDCoV-, PEDV-, TGEV-, CSFV-, PRRSV-, and 
PCV2-positive sera were tested. All nonspecific posi-
tive sera were determined to be PDCoV-negative, with 
PI values that were lower than the cutoff value. The PI 
value for PDCoV-positive serum was approximately 
85.1%, whereas the PI values for other virus-positive 

sera ranged from 3.4% to 12.85%, indicating that the 
cELISA had good analytical specificity (Fig. 3B).

The intra-batch assay CV of the developed cELISA 
ranged from 1.32% to 3.22%, whereas the interassay CV 
ranged from 4.51% to 7.54%, indicating that the cELISA 
results were reproducible and reliable (Table  1). These 
findings indicate that cELISA is suitable for the serologi-
cal diagnosis of PDCoV.

ELISAs are widely used serological tests that can detect 
exposure to pathogens and evaluate the efficacy of vac-
cines. ELISAs are easy to standardize and validate, and 
they can also analyze samples in a high-throughput 
manner (Riepler et  al. 2020). Although several indirect 

Fig. 2  Receiver operating characteristic (ROC) analysis for competitive ELISA. The assay was conducted with PDCoV-positive sera (n = 39) 
and PDCoV-negative sera (n = 83). A ROC analysis of the competitive ELISA results; the area under the curve (AUC) of the test was 0.9919. 
B Interactive dot plot diagram displaying the PI value of each serum sample when the cutoff value was set to 26.8%. PDCoV (porcine 
deltacoronavirus), ROC (receiver operating characteristic), AUC (area under the curve)

Fig. 3  Analytic sensitivity and specificity of the competitive ELISA. A Twofold serially diluted PDCoV-positive reference serum samples ranging 
from 1:4 to 1:1024 were detected to evaluate analytic sensitivity. B Sera positive for PDCoV, PEDV, TGEV, CSFV, PRRSV and PCV2 were tested 
to evaluate analytic specificity. The PI cutoff value of 26.8% is marked with a dashed line. PDCoV (porcine deltacoronavirus), PEDV (porcine epidemic 
diarrhea virus), TGEV (transmissible gastroenteritis virus), CSFV (classical swine fever virus), PRRSV (porcine reproductive and respiratory syndrome 
virus), PCV2 (porcine circovirus type 2)



Page 5 of 8Wang et al. Animal Diseases            (2024) 4:30 	

ELISAs based on S1, N and M proteins (Luo et al. 2017; 
Su et al. 2016; Thachil et al. 2015), as well as a blocking 
ELISA based on N proteins (Wang et  al. 2022b), have 
been developed for the detection of PDCoV antibodies 
in swine, there are currently no commercial ELISA kits 
available to compare the diagnostic correlation between 
IgG antibodies detected via ELISA and neutralizing 
antibodies detected via VNT. However, owing to the 
high level of genetic diversity among different strains of 
the same coronavirus, the application of S proteins as 
an antibody detection platform in field applications is 
limited. Bahoussi  reported that the PDCoV S genome 
exhibited the lowest similarity levels (< 93%), with the 
N genome sequence demonstrating greater similarity 
(> 95%) (Bahoussi et al. 2022).

Comparison of clinical field serum sample detection 
methods
The results of the competitive ELISA and virus neutrali-
zation test (VNT) on 206 serum samples showed almost 
perfect agreement (Kappa value of 0.851), with a coin-
cidence rate of 92.7%. In addition, 41.3% of the PDCoV 
antibodies were positive by cELISA, whereas 43.7% of the 
PDCoV antibodies were positive by VNT (Table 2). These 
findings demonstrate that cELISA can be used as an effi-
cient alternative to VNT for the detection of PDCoV 
antibodies.

The presence of neutralizing antibodies is essential 
for providing protection and clearing enteropathogenic 

coronavirus from an infected individual (Liu and Arase 
2022). Vaccine candidates should be able to effectively 
induce neutralizing antibodies to provide immunity 
against the virus. Neutralizing antibodies are a key fac-
tor in providing immunity and clearing the virus, and 
virus neutralization tests are labor-intensive and time-
consuming, which requirs live viruses and complicates 
their standardization process in comparison to ELISAs. 
Therefore, the repeatability of the virus neutralization 
test is crucial. In this study, we compared the correlations 
between ELISA-detected antibodies and neutralizing 
antibodies, and our results were ideal, with a coinci-
dence rate of 92.7% and a kappa value of 0.851, indicat-
ing almost perfect agreement between the two detection 
methods (Li et al. 2021; Moreno et al. 2019).

Conclusions
In summary,  this research  developed a monoclonal 
antibody-based competitive ELISA that uses the puri-
fied recombinant PDCoV N protein as a coating antigen 
to detect PDCoV antibodies. This assay exhibits excellent 
diagnostic performance, including sensitivity, specificity 
and repeatability. In addition, cELISA has a strong corre-
lation with the virus neutralization test, proving its utility 
for diagnostic assistance, evaluating the response to vac-
cination, and assessing swine herd immunity in the future.

Methods
Virus, cell and serum samples
The PDCoV CZ2020 strain (GenBank accession number: 
OK546242) was isolated and maintained in our labo-
ratory. The LLC-PK1 cell line was purchased from the 
China Institute of Veterinary Drug Control.

Sera positive for PEDV, TGEV, CSFV, PRRSV and 
PCV2 were preserved in our laboratory. PDCoV-, PEDV-, 
and TGEV-positive sera were collected during our previ-
ous pig challenge experiments and identified by IFA and 
VNT. CSFV-, PRRSV-, and PCV2-positive sera were pur-
chased from commercial kits. PDCoV sera were collected 
during our previous pig challenge experiments (Li et al. 
2022; Zhang et al. 2022).

Table 1  Repeatability analysis of the developed competitive ELISA

Mean: average PI values from three repeated competitive ELISAs; CV: coefficient of variation; SD: standard deviation

PDCoV sera Intrabatch assay Interbatch assay

Mean SD CV Mean SD CV

Strongly positive 99.4% 0.0320 3.22% 93.6% 0.0698 7.46%

Moderately positive 54.7% 0.0072 1.32% 56.9% 0.0428 7.54%

Weakly positive 31.8% 0.0061 1.91% 30.1% 0.0136 4.51%

Table 2  Comparison of competitive ELISA and virus 
neutralization tests for detecting PDCoV antibodies in serum 
samples

Serum samples cELISA Total Kappa value

Positive Negative

VNT Positive 80 10 90 0.851

Negative 5 111 116

Total 85 121 206
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Preparation of recombinant PDCoV N protein and indirect 
immunofluorescence assay for identifying swine sera 
and monoclonal antibodies
The recombinant PDCoV N (rPDCoV-N) protein and 
monoclonal antibody No.2 (mAb-2#) against the N pro-
tein were prepared according to our previous study 
(Wang et al. 2021). IFA was performed as described pre-
viously (Okda et al. 2016; Wang et al. 2022a). Briefly, 104.0 
TCID50/mL PDCoV was inoculated into LLC-PK1 cells, 
fixed with methyl alcohol, and then blocked with 5% 
skim milk. Next, the cells were incubated with swine sera 
(dilutions of 1:20, 1:40, 1:200, 1:400 and 1:800) or mAb-2# 
at 37℃ for 60 min and incubated with goat anti-pig IgG 
conjugated with FITC (Abcam, UK) (1:1000) or goat anti-
mouse IgG conjugated with FITC (Boster, China) (1:500) 
for an additional 60 min. Finally, the cells were observed 
under a fluorescence microscope (Olympus IX-51, Japan). 
Uninfected cells served as a negative control. Serum sam-
ples were considered positive if PDCoV-specific fluores-
cence was observed at a 1:20 serum dilution (Okda et al. 
2016).

Virus neutralization test
A virus neutralization test was performed via a method 
described previously with some modifications (Song et al. 
2023). The CPE was examined, and the neutralizing anti-
body titer was expressed as the log2 transformation of the 
reciprocal of the highest serum dilution that completely 
inhibited the CPEs.

Establishment and optimization of the competitive ELISA
The optimal conditions of cELISA were established, 
including the optimal antigen-coating concentration, 
working concentration of mAb-2# and concentration of 
HRP-conjugated goat anti-mouse IgG. To begin, micro-
plates were coated with the rPDCoV-N protein at a con-
centration of 0.8 µg/mL at 4°C overnight. Then, the cells 
were blocked with 5% skim milk for 2 h at 37°C. Two-fold 
dilutions of positive or negative reference serum or an 
unknown serum mixture were separately added to the 
plates and incubated for 60 min. mAb-2# at a concentra-
tion of 1.0 µg/mL was added to each well and then incu-
bated for 60  min. HRP-conjugated goat anti-mouse IgG 
at a 1:14,000 dilution was subsequently added to each 
well, and the mixture was incubated for 60  min. Then, 
TMB substrate was added to each well, followed by 
incubation at room temperature in the dark for 13 min. 
Finally, the reaction was stopped by adding sulfuric acid 
to each well. The OD values of the samples were read at 
450 nm via a microplate spectrophotometer.

Determination of the cutoff value, diagnostic specificity 
and diagnostic sensitivity of competitive ELISA
The cutoff value of the developed cELISA was deter-
mined by analyzing 122 swine serum samples (39 positive 
and 83 negative) collected from our previous pig chal-
lenge experiments, which had a known PDCoV antibody 
status confirmed by IFA. These 122 swine sera were then 
detected via the optimized cELISA.

The cELISA and IFA results of the serum samples were 
compared using receiver operating characteristic (ROC) 
curves to determine the optimal cutoff value that maxi-
mized the diagnostic specificity and sensitivity of the 
assay. The PI values of each serum sample were analyzed 
using GraphPad Prism software (version 7.0; USA) to 
determine the area under the curve (AUC) at the 95% 
confidence interval (CI). The IFA results and their corre-
sponding PI values were also analyzed by receiver oper-
ating characteristic (ROC) curve analysis to determine 
diagnostic sensitivity and specificity values (Swets 1988).

Assessment of analytic sensitivity, specificity 
and repeatability of the competitive ELISA
After the cutoff value criteria were determined, the ana-
lytic sensitivity of the cELISA was assessed via a PDCoV-
positive reference serum that was serially diluted twofold 
from 1:4–1024. Furthermore, the analytic specificity of 
the cELISA was evaluated via six different virus-positive 
serum samples, namely, PDCoV, PEDV, TGEV, CSFV, 
PRRSV and PCV2.

To evaluate the intra-batch and inter-batch assay repeat-
ability of the developed cELISA, three serum samples 
were tested and showed strongly, moderately and weakly 
positive results against PDCoV. The cELISA was con-
ducted on one plate in one run (intra-assay) or on three 
distinct plates in three independent runs (inter-assay), 
with each serum being detected in triplicate. The CV was 
used to evaluate the degree of variation of the cELISA, 
which was calculated by dividing the standard deviation 
(SD) by the mean PI value of each serum sample.

Comparison of competitive ELISA and virus neutralization 
tests in clinical field serum samples for PDCoV antibody 
detection
To evaluate the validity of the developed cELISA, a total 
of 206 serum samples were separately collected from vac-
cinated and unvaccinated control pigs 14–28 days post-
vaccination. The “Porcine Deltacoronavirus Vaccine, 
Inactivated (Strain LYG/14)” was used in the immuni-
zation trial and is a pilot plant product that is not com-
mercially available. The sera were tested by VNT to 
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determine the neutralizing antibody titer and then fur-
ther detected by cELISA. The consistency was calculated 
via the following formula: (true positive + true negative)/
(true positive + false positive + true negative + false nega-
tive) × 100%. The agreement between the cELISA and 
VNT was measured by calculating the Cohen’s kappa (κ) 
statistic value. The κ values were interpreted according to 
the Landis and Koch descriptors (Landis and Koch 1977).
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