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Abstract

The zoonotic cryptosporidiosis is globally distributed, one of the major diarrheal diseases in humans and animals.
Cryptosporidium oocysts are also one of the major environmental concerns, making it a pathogen that fits well into
the One Health concept. Despite its importance, fully effective drugs are not yet available. Anti-cryptosporidial drug
discovery has historically faced many unusual challenges attributed to unique parasite biology and technical
burdens. While significant progresses have been made recently, anti-cryptosporidial drug discovery still faces a
major obstacle: identification of systemic drugs that can be absorbed by patients experiencing watery diarrhea and
effectively pass through electron-dense (ED) band at the parasite-host cell interface to act on the epicellular
parasite. There may be a need to develop an in vitro assay to effectively screen hits/leads for their capability to
cross ED band. In the meantime, non-systemic drugs with strong mucoadhesive properties for extended
gastrointestinal exposure may represent another direction in developing anti-cryptosporidial therapeutics. For
developing both systemic and non-systemic drugs, a non-ruminant animal model exhibiting diarrheal symptoms
suitable for routine evaluation of drug absorption and anti-cryptosporidial efficacy may be very helpful.
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The zoonotic Cryptosporidium as an important
One Health pathogen
Significance of cryptosporidiosis in human and animal
health
The enteric Cryptosporidium is a globally distributed,
water-borne and food-borne diarrheal-causing parasite
(Tzipori and Widmer 2000; Checkley et al. 2015). The
major symptom of cryptosporidiosis is watery diarrhea
that may range from mild to severe or deadly in humans
and animals. Currently, there are ~ 40 recognized
Cryptosporidium species or genotypes (Feng et al. 2018).
Humans are mainly infected by the zoonotic C. parvum

and anthropogenic C. hominis. Patients with weakened
or compromised immunity may be infected by other
species (e.g., C. canis, C. felis, C. meleagridis and C.
xiaoi) (O’Connor et al. 2011; Adamu et al. 2014; Ryan
et al. 2014; Pumipuntu and Piratae 2018). It is also one
of the top diarrheal pathogens afflicting children in de-
veloping countries with significant negative impact on
mortality and growth (Kotloff et al. 2013), resulting in
an estimated 4.2 million disability adjusted life years
(DALY) lost in children under 5 years old (Khalil et al.
2018). One particular concern is the long-term effects in
children, involving growth stunting and cognitive deficits
even after the recovery of cryptosporidiosis (Kotloff et al.
2013; Khalil et al. 2018).
Cryptosporidiosis is also a significant health problem

in wild and domesticated animals. In farm animals,
Cryptosporidium is responsible for the severe to deadly
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neonatal diarrhea syndrome of calves and other young
ruminants, resulting in considerable direct and indirect
economic losses (de Graaf et al. 1999; Olson et al. 2004).
Cryptosporidiosis also produces long-term negative ef-
fects in animals, including lowering weight gains and
production performance in cattle and sheep (Jacobson
et al. 2016; Innes et al. 2020; Shaw et al. 2020). For ex-
ample, beef calves might lose an average of 34 kg at 6
months of age if they had experienced cryptosporidi-
osis as neonates in comparison to those with no clin-
ical signs of infection (Shaw et al. 2020).

Cryptosporidium as a One Health model pathogen
Oocysts are environmental stage of the parasite respon-
sible for transmission between humans and/or animals.
Oocysts contain a wall structure that is highly resistant
to chemicals including disinfectants, while the 4 sporo-
zoites within an oocyst wall are reasonably resistant to
temperature fluctuation and desiccation, probably re-
lated to the presence of stress protectant trehalose (Yu
et al. 2010). For these reasons, cryptosporidium oocysts
are a significant environmental contaminant, responsible
for numerous water-borne outbreaks of cryptosporidi-
osis around the world (Corso et al. 2003; Chyzheuskaya
et al. 2017; Ridderstedt et al. 2018). Long-surviving oo-
cysts may be carried to different places around the world
in water and soil to interact with humans and animals,

and adapted to new environments and hosts, which
complicate the evolution of epidemiology and popula-
tion structures of cryptosporidiosis (Feng et al. 2018).
Therefore, Cryptosporidium may serve as one of the
model One Health pathogens that impact human, ani-
mal and environmental health at regional and global
levels (Fig. 1) (Ryan et al. 2016; Innes et al. 2020).

Unique intracellular lifestyle of Cryptosporidium
Cryptosporidium is transmitted via fecal-oral route, and
has a unique epi-cytoplasmic lifestyle (i.e., intracellular,
but extra-cytoplasmic) (Prystajecky et al. 2014). When
humans or animals ingest oocysts, sporozoites are re-
leased from oocysts to invade intestinal epithelial cells,
starting its intracellular development. In humans and
other mammals, ileum is the major infection site for in-
testinal cryptosporidium species (Leitch and He 2012;
Abdou et al. 2013).
Parasite mainly infects intestinal epithelial cells, where

it is separated from the host cell cytosol by an electron-
dense (ED) band and associated structures, but em-
braced by a host cell-derived parasitophorous vacuole
membrane (PVM) (Fig. 2) (Elliott and Clark 2000). This
epi-cytoplasmic location makes Cryptosporidium differ-
ent from other apicomplexans that reside within the
host cell cytosol (e.g., Eimeria, Toxoplasma and
Plasmodium).

Fig. 1 Interactions and impact of Cryptosporidium on human, animal and environmental health under the One Health concept. The stress-
resistant oocysts play a central role in transmission of cryptosporidial infections between and among humans and animals via direct contact and/
or contamination of environment. Credit to Lin Xia and Wenjuan Wang for illustration
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Current status of anti-cryptosporidial drug
discovery
Limited treatment options
Despite its medical and veterinary importance, current
options to treat cryptosporidiosis in humans and animals
are limited. Only nitazoxanide is approved by the Food
and Drug Administration (FDA) in the United States to
treat cryptosporidiosis in immune-competent individ-
uals, but not for immuno-compromised individuals, such
as AIDS patients (Chappell and Okhuysen 2002; White
Jr. 2003; Jenkins 2004; Smith and Corcoran 2004; Fox
and Saravolatz 2005). However, nitazoxanide is not fully
effective (Fox and Saravolatz 2005), and has an ill-
defined mechanism of action. There is also no FDA-
approved drugs to treat cryptosporidiosis in animals. In
some countries, halofuginone lactate (Halocur) is ap-
proved for veterinary use in calves and lambs, which dis-
plays some anti-cryptosporidial efficacy, but again it’s
not fully effective in eliminating oocyst production
(Klein 2008; Trotz-Williams et al. 2011; Petermann et al.
2014).

Recently discovered anti-cryptosporidial leads and targets
An increasing effort over the past two decades has led to
the discovery of several lead compounds with defined
targets and anti-cryptosporidial efficacies at lower nano-
molar level in vitro and low mg/kg/d doses in mouse
models. A few of them have also been evaluated in
calves. These leads include “compound 5” on lysyl-tRNA
synthetase (KRS) (Baragana et al. 2019), BRD7929 on
phenylalanyl-tRNA synthetase (PheRS) (Vinayak et al.
2020), inhibitors of bumped-kinase (Arnold et al. 2017;
Lee et al. 2018; Huang et al. 2019), “compound 1294” on
calcium-dependent protein kinase (CDPK) (Castellanos-
Gonzalez et al. 2013), P131 on inosine-5′-mono-phos-
phate dehydrogenase (IMPDH), (Gorla et al. 2014),
KDU731 on phosphatidylinositol-4-OH kinase (PI (4) K)
(Manjunatha et al. 2017), triacsin C on acyl-CoA synthe-
tase (ACS) (Guo et al. 2014), vorinostat on histone dea-
cetylase (HDAC) (Guo et al. 2018), and gossypol on
lactate dehydrogenase (LDH) (Zhang et al. 2015; Li et al.
2019). However, they are mostly in various preclinical
and lead optimization stages. Even if one or more of

Fig. 2 Illustration of drug delivery routes for systemic and non-systemic drugs to an intracellular Cryptosporidium meront that is separated from
host epithelial cell cytosol by an electron-dense (ED) band, but embraced by a host cell-derived parasitophorous vacuole membrane (PVM) facing
the intestinal lumen. Systemic drugs need to cross through the selective ED band and feeder organelle (route 1), while luminal non-systemic
drugs may directly act on parasite through PVM (route 2). A regular 2D culture system is unable to evaluate systemic drug route since the basal
surface of host cells is attached to a nonporous plastic surface. Credit to Lin Xia and Wenjuan Wang for illustration
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these leads (or analogs) are developed into therapeutics
in the future, more drug options are still needed to di-
versify drug targets and for overcoming potential drug
resistance.
More recently, a randomized, double-blind, placebo-

controlled study on the efficacy of clofazimine for treat-
ing cryptosporidiosis in HIV-infected patients was re-
ported. However, the “findings do not support the
efficacy of clofazimine for the treatment of cryptospor-
idiosis in a severely immunocompromised HIV popula-
tion” (Iroh Tam et al. 2020). This further exemplifies the
difficulties in developing anti-cryptosporidial drugs.

Historical challenges and progresses in anti-
cryptosporidial drug discovery
Anti-cryptosporidial drug discovery faces additional
challenges compared to other apicomplexans. Limiting
factors are present at virtually all stages of drug develop-
ment pipeline from basic research to preclinical investi-
gations (Fig. 3). This section will briefly discuss the
historical challenges and progress related to anti-
cryptosporidial drug discovery and development.

Limited availability of parasite materials
A major limiting factor impeding research and drug dis-
covery in this particular field is the difficulties in obtain-
ing large number of pure parasite materials for
experiments. The zoonotic species C. parvum is the

most commonly used species in research, for which oo-
cysts can be obtained at a reasonable scale from bovine
neonatal calves (up to billions of oocysts), or in limited
amounts in some immunodeficient mice (up to millions
of oocysts). Oocysts can be isolated from calf feces by
gradient centrifugation procedures and further cleaned
using chlorine to achieve high purity. Free sporozoites
can be obtained by in vitro excystation (Arrowood and
Sterling 1987; Arrowood and Donaldson 1996; Arro-
wood 2020). Therefore, oocysts and sporozoites are the
only 2 stages for which highly pure materials can be ob-
tained for experimental use. For C. hominis, only a
gnotobiotic piglet model is available for maintaining and
propagating certain parasite isolates in specialized facil-
ities (Lee et al. 2018, 2019).

Lack of continuous in vitro cultivation platform for
routine use
In vitro culture protocols of C. parvum have been estab-
lished for decades. Parasite oocysts can undergo excysta-
tion to release sporozoites that invade host cells and
develop for 2–3 days under in vitro condition. The
in vitro growth is mostly limited to asexual stages (i.e.,
merogony), and up to the formation of macro- and
micro-gametes that are unable to fertilize to form zy-
gotes and viable oocysts (Tandel et al. 2019). In vitro
culture can provide less synchronized meronts and mer-
ozoites in host cells for microscopic and molecular

Fig. 3 Illustration and brief annotation of drug discovery pipeline, major assays and models in target-based and phenotypic screening
approaches. Yellow and green boxes indicate discovery and developmental phases. In both approaches, structure-activity relationship (SAR) and
mode of action (MoA) analysis may be started shortly after hits are identified and extended to later stages. In the phenotypic screening approach,
discovery of target by the identified hit may be needed for determining MoA. Biochemical assays and in vitro assays may be developed in the
basic research phase and used throughout the discovery phase, and extended into the preclinical phase. Small animal models are used in
discovery and preclinical phases, while large animal models are used in preclinical phase. For drug discovery against cryptosporidiosis, it’s critical
to discover efficacious systemic drugs that can be effectively absorbed by human or animal patients and cross electron-dense (ED) band at the
parasite-host cell interface, or non-systemic drugs that have sufficient gastrointestinal tract (GIT) exposure for acting on the epicellular parasite (as
illustrated in Fig. 2)
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experiments, but is unable to propagate parasite for pro-
viding unlimited materials. The inability to continuously
grow parasite in vitro has been a significant obstacle for
both cryptosporidium and coccidia (such as Eimeria spe-
cies) (Muller and Hemphill 2013). For comparison,
Toxoplasma and Plasmodium parasites have a merozoite
stage that can be continuously cultured in fibroblasts or
erythrocytes in vitro (Muller and Hemphill 2013; Szabo
and Finney 2017; Bermudez et al. 2018; Duffy and Avery
2018).
More recently, complete life cycle development of C.

parvum was obtained using a stem-cell-derived platform,
which represents a progress milestone in cryptosporid-
ium research (Wilke et al. 2019). Another notable devel-
opment is the continuous 3D cultivation of
Cryptosporidium in hollow fiber bioreactors (Morada
et al. 2016; Yarlett et al. 2020), and a few bioengineered
intestinal models based on silk-protein scaffold, colon
explants or lung/small intestine organoids cultured with
parasites over weeks (Baydoun et al. 2017; DeCicco Re-
Pass et al. 2017; Heo et al. 2018). A more comprehensive
review on these organoids and bioengineered intestinal
models was reported by Gunasekera et al. (2020). None-
theless, these models and platforms are not yet opti-
mized for routine production of oocysts, and remain
technically challenging for regular laboratory use. How-
ever, they raise hope for further optimization and
adaptation.

Absence of conventional drug targets
At a basic biology level, cryptosporidium lacks many
drug targets present in other apicomplexans because of
a highly streamlined metabolism and absence of de novo
nutrient synthetic pathways (e.g., amino acids, nucleo-
tides and fatty acids), or targets that are highly divergent
(e.g., DHFR) (Abrahamsen et al. 2004; Xu et al. 2004;
Zhu 2007; Rider Jr. and Zhu 2010). The difficult gene-
hunting game was concluded in 2004 after the whole
genome sequences of several Cryptosporidium species
(Abrahamsen et al. 2004; Xu et al. 2004; Rider Jr. and
Zhu 2010; Ifeonu et al. 2016), providing opportunities
for investigators to intellectually explore various essen-
tial or critical proteins and pathways as potential drug
targets (see Current status of anti-cryptosporidial drug
discovery section above for examples on recently discov-
ered leads and targets). Although not every explored tar-
get will lead to a successful clinically validated drug, the
more we explore, the higher probability that one or
more drugs operating via different action modes could
be eventually developed.

Available now but still tricky genetic manipulation
At the genetic level, there used to be a lack of tools for
ultimate drug target validation. This obstacle is partially

resolved by the successful development of CRIPR/Cas9-
based genome-editing tools in C. parvum and C. tyzzeri
(Vinayak et al. 2015; Sateriale et al. 2019, 2020). It is
now possible to conduct gene knockout to evaluate the
essentialness or importance of a gene in cryptosporid-
ium, albeit the tool may not be easily adapted for use by
routine laboratories. Conditional gene knockout strat-
egies are also under development for studying essential
genes and validating drug targets (Choudhary et al.
2020). The mouse-specific species C. tyzzeri is evolution-
arily more closely related to C. parvum and C. hominis
than other species that infecting mammals (Sateriale
et al. 2019), and more convenient for laboratory manipu-
lation. Therefore, C. tyzzeri may serve as a great genetic
model for studying the core biological questions, and for
acquiring preliminary and proof-of-concept data, prior
to conducting experiments using C. parvum and C.
hominis.
There are also notable reports of 2 Cryptosporidium

gene-silencing strategies: one uses morpholino antisense
oligonucleotides with success in knockdown parasite lac-
tate dehydrogenase (LDH) gene expression (Witola et al.
2017; Zhang et al. 2018), and the other employs recom-
binant human Argonaute protein (hAgo2) pre-
assembled with single-stranded RNA (ssRNA) of tar-
geted genes (Castellanos-Gonzalez et al. 2016, 2019).

Development of in vitro phenotypic screening platforms
At the phenotypic screening level, in vitro culture of C.
parvum in 96- or 384-well plates can be readily achieved
to a satisfactory uniformity between wells by an experi-
enced researcher. The earlier challenge for high-
throughput screening or evaluating drug efficacy against
cryptosporidial growth with traditional methods are ei-
ther time-consuming (microscopic counting of the para-
site) or have narrow linear dynamic range (e.g., ELISA
or chemiluminescent assays using anti-cryptosporidial
antibodies).
This obstacle has been cleared after the development

and optimization of 2 platforms based on high-content
imaging analysis (Bessoff et al. 2013), a luciferase assay
using transgenic cryptosporidium strains (Manjunatha
et al. 2017), and a qRT-PCR-based approach (Zhang and
Zhu 2015, 2020). Among them, qRT-PCR assay omits a
nucleic acid isolation step by directly using diluted cell
lysates as templates, making it more easily adapted for
use by other laboratories that lack a plate imaging facil-
ity and are unable to develop or acquire transgenic para-
site strains.

Availability and limitations of animal models
In evaluating drug efficacy in animals, there is a lack of
small animal models mimicking acute and chronic
cryptosporidiosis with watery diarrhea, the hallmark
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clinical symptom of cryptosporidiosis. Mouse neonates
and several immunodeficient breeds are the most com-
monly used small animal models that are unable to pro-
duce diarrheal symptoms, but sufficient to assess the
effect of a drug on oocyst production (Castellanos-
Gonzalez et al. 2013; Guo et al. 2014, 2018; Arnold et al.
2017; Manjunatha et al. 2017; Lee et al. 2018; Baragana
et al. 2019; Huang et al. 2019).
Bovine calves and gnotobiotic piglets produce watery

diarrhea with experimental cryptosporidial infections,
and have been developed into reproducible large animal
models for evaluating anti-cryptosporidial drug efficacy
(Schaefer et al. 2016; Manjunatha et al. 2017; Lee et al.
2018, 2019; Riggs and Schaefer 2020). As one of the na-
tive hosts of zoonotic C. parvum, drug absorption and
efficacy data from bovine calves are directly relevant to
treat calf cryptosporidiosis. However, it's difficult to test
multiple calves in a reasonable timeframe, and data from
calves may be less applicable to humans due to funda-
mental differences in digestive anatomy and physiology
(Toutain et al. 2010; Hatton et al. 2015; Ziegler et al.
2016).
On the other hand, piglets have the advantage for in-

fection of both C. parvum and C. hominis (Lee et al.
2018, 2019). In comparison with ruminants, drug ab-
sorption and efficacy data obtained from piglets may be
more applicable to humans due to the similarity between
human and porcine digestive systems (Theodos et al.
1998; Manjunatha et al. 2017; Lee et al. 2018). In
addition to calves and piglets, a nonhuman primate
model using pigtailed macaques (Macaca nemestrina)
was reported in the early 1990’s (Miller et al. 1990,
1991). This reproducible experimental model showed
clinical symptoms as humans, and can be useful in the
final stage of preclinical investigations.

Current challenges in developing therapeutics
and potential solutions
As discussed above, cryptosporidial research community
has confronted the unusual challenges in anti-
cryptosporidial drug discovery and is making significant
progress. Phenotypic screening and target-based ap-
proaches have resulted in the discovery of a number of
leads displaying excellent anti-cryptosporidial efficacy
in vivo. Some anti-cryptosporidial drug discovery and
development programs are ready for (or close to) clinical
investigation, while more may be in the stage of lead
optimization. However, the field is still facing a final
challenge in developing a clinically successful drug to
treat patients experiencing severe watery diarrhea.

ED band as an extra barrier for delivery of systemic drugs
Most of the drug discovery efforts focus on systemic
drugs, but the “epicellular” (i.e., intracellular but extra-

cytoplasmic) lifestyle of parasite creates an extra burden
for systemic drugs to cross ED band and reach parasite
(Fig. 2). Molecular compositions and functions of
parasite-host cell interface are still poorly understood,
but one can assume that ED band is the major pathway
for parasite to acquire nutrients from host cell cytoplasm
(Leitch and He 2012). Therefore, ED band is expected to
be highly “selective” in allowing molecules to pass
through from host cells. This may explain that a signifi-
cant number of excellent anti-cryptosporidial hits/leads
identified by in vitro screening showed unsatisfactory ef-
ficacy in vivo.
A successful systemic drug must be able to pass

through ED band. Data derived from mouse models can
be indicative, in which the efficacy of a systemic drug
would show strong correlation with pharmacokinetic pa-
rameters in plasma, rather than with luminal or fecal
drug concentrations (Castellanos-Gonzalez et al. 2013;
Guo et al. 2014, 2018; Arnold et al. 2017; Manjunatha
et al. 2017; Lee et al. 2018; Baragana et al. 2019; Huang
et al. 2019). Animal experiments are costly and time-
consuming, although acute infection mouse models may
be used to test more compounds with reduced costs and
time (Guo et al. 2018).
Therefore, an in vitro assay that can conveniently

evaluate the permeability of ED band for small mole-
cules will be very helpful for prioritizing identify hits/
leads for subsequent evaluation in animals. Current 2D
or 3D cultivation platforms can be applied to in vitro
evaluation of pharmacokinetic and pharmacodynamic
properties of potential lead compounds prior to animal
studies (Morada et al. 2016; Yarlett et al. 2020), but none
of them is able to evaluate systemic drug route since
drugs are directly exposed to parasite. However, it is
technically achievable to grow a layer of tightly con-
nected host cells, in which Cryptosporidium resides on
top of host cells on one side of the layer while drugs can
be applied to the other side to achieve the host-cell-to-
the-parasite delivery route.

Absorption as an important factor in drug discovery
against the diarrheal-causing cryptosporidiosis
Another obstacle is related to absorption of systemic
drugs, as they may be “flushed out” quickly from GIT
(gastrointestinal tract), giving insufficient time for ab-
sorption by hosts experiencing severe watery diarrhea.
Combination of an anti-cryptosporidial drug with an
anti-diarrheal medicine may improve efficacy, although
anti-diarrheal medicines have a limited effect to ease
cryptosporidial-induced diarrheal symptoms (Checkley
et al. 2015).
Novel pharmacological modifications and formulations

may be employed to increase drug absorption in individ-
uals experiencing severe diarrhea, such as by enhancing
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drug’s mucoadhesion property (Pridgen et al. 2015; Pur-
ohit et al. 2018), and/or by exploring the enterohepatic
recycling pathway to increase gastrointestinal exposure
and bioavailability (Xia et al. 2012; Dai et al. 2015).
Evaluation of drug absorption and anti-cryptosporidial

efficacy in animals is also a challenge, because these
properties cannot be fully assessed in current mouse
models that exhibit no diarrheal symptoms, and routine
evaluation of a large number of drugs in neonatal calf
and gnotobiotic piglet models are impractical. Therefore,
the development of more convenient piglet models (vs.
gnotobiotic piglets) can be very helpful to overcome the
bottleneck in preclinical evaluation of anti-
cryptosporidial drugs.

Non-systemic drugs as an alternative strategy
Another approach is to develop “non-systemic” drugs to
more directly act on the epicellular parasite in GIT. It is
known that some compounds cannot be well absorbed,
or unable to effectively pass ED band to act on parasite,
but gastrointestinal exposure is critical to their anti-
cryptosporidial activity (e.g., paromomycin and some
bumped kinase inhibitors) (Arnold et al. 2017).
More recently, a glycolipopeptide occidiofungin fea-

tured by poor absorbability and GIT retainment was
found to be highly efficacious on C. parvum in vitro with
limited cytotoxicity (Ma et al. 2020). These observations
suggest that non-systemic drugs may be an effective al-
ternative to develop systemic drugs. However, non-
systemic drugs would still face the same challenge of be-
ing flushed out by diarrhea, which may be resolved by
increasing the mucoadhesive property and/or in combin-
ation of anti-diarrheal medicines to increase their reten-
tion in host GIT.

Conclusions
Cryptosporidiosis is an important zoonotic disease for
which fully effective treatments are unavailable. The epi-
cellular (intracellular, but extra-cytoplasmic) parasitic
lifestyle makes the diarrheal pathogen cryptosporidium
different from other enteric coccidia that reside within
host cell cytosol, and creates unique challenges in devel-
oping therapeutics. Systemic drugs need to be not only
absorbed rapidly by GIT of humans and animals that
typically experiencing severe watery diarrhea, but also to
effectively pass through the selective ED band to act on
parasite. It would be helpful to develop an in vitro assay
to effectively screen hits/leads for their permeability over
ED band.
Non-systemic drugs may be an effective alternative

direction, as they only need to cross PVM to act on
parasite. For non-systemic drugs, the ability to cross
PVM is not a major concern for hits/leads that already
show satisfactory efficacy in vitro. Challenge is their

retainment in GIT of individuals experiencing diarrhea.
For both systemic and non-systemic drugs, improving
mucoadhesive property by formulation or chemical
modification would be helpful to absorption for systemic
drugs and to retainment for non-systemic drugs, to
achieve significant efficacy in humans.
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