Skip to main content

Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins

Abstract

Staphylococcal superantigen (SAg) toxins are the most notable virulence factors associated with Staphylococcus aureus, which is a pathogen associated with serious community and hospital acquired infections in humans and various diseases in animals. Recently, SAg toxins have become a superfamily with 29 types, including staphylococcal enterotoxins (SEs) with emetic activity, SE-like toxins (SEls) that do not induce emesis in primate models or have yet not  been tested, and toxic shock syndrome toxin-1 (TSST-1). SEs and SEls can be subdivided into classical types (SEA to SEE) and novel types (SEG to SElY, SE01, SE02, SEl26 and SEl27). The genes of SAg toxins are located in diverse accessory genetic elements and share certain structural and biological properties. SAg toxins are heat-stable proteins that exhibit pyrogenicity, superantigenicity and capacity to induce lethal hypersensitivity to endotoxin in humans and animals. They have multiple pathogenicities that can interfere with normal immune function of host, increase the chances of survival and transmission of pathogenic bacteria in host, consequently contribute to the occurrence and development of various infections, persistent infections or food poisoning. This review focuses on the following aspects of SAg toxins: (1) superfamily members of classic and novelty discovered staphylococcal SAgs; (2) diversity of gene locations and molecular structural characteristics; (3) biological characteristics and activities; (4) multi-pathogenicity of SAgs in animal and human diseases, including bovine mastitis, swine sepsis, abscesses and skin edema in pig, arthritis and septicemia in poultry, and nosocomial infections and food-borne diseases in humans.

Introduction

Staphylococcus aureus produces a variety of exotoxins and proteases that contribute to their ability to colonize and cause disease in humans and animals. Superantigen (SAg) toxins are important exotoxins of S. aureus, including staphylococcal enterotoxin A (SEA) to SEE, SEG to SET, staphylococcal enterotoxin-like toxins U (SElU) to SElY, SE01, SE02, SEl26, SEl27 and toxic shock syndrome toxin-1 (TSST-1) (Dinges et al. 2000; Hu and Nakane 2014; Ono et al. 2015; Suzuki et al. 2020; Zhang et al. 2018). SAg toxins are proteins composed of approximately 168–261 amino acids, with molecular size of 19–30 kDa (Table 1). The toxin genes are located in mobile genetic elements, such as υSa genome islands, pathogenic islands, phages, plasmids or near staphylococcal cassette chromosome (SCC), which are related to methicillin resistance (Hu and Nakane, 2014, Hu et al., 2018). SAg toxins share certain structural and biological properties (Kappler et al. 1989; Hu and Nakane 2014; Marrack and Kappler 1990). Unlike conventional antigen (Ag), SAg can bypass normal processing by antigen-presenting cells (APC) and induce a large proportion (5–30%) of T-cells to proliferate through co-ligation between major histocompatibility complex (MHC) class II molecules on APC and the variable portion of T-cell antigen receptor β chain (TCR Vβ) or α chain (TCR Vα) (Kozono et al. 1995; Saline et al. 2010; Tiedemann and Fraser, 1996). SAg toxins activate APC/T-cells to release large amount of cytokines, exhibiting many immunomodulatory activities to T cells and/or B cells and enhancing endotoxic shock. They may undermine the immune response against bacterial infections (Choi et al. 1990; Deringer et al. 1997; Edwards et al. 2012), causing specific acute clinical syndromes such as toxic shock syndrome (TSS), staphylococcal scarlet fever (Bergdoll et al. 1981; Betley et al. 1992; Schlievert et al. 2000), atopic dermatidis (Schlievert et al. 2008), and Kawasaki-like illness (Hall et al. 1999) in humans, causing bovine mastitis (Ote et al., 2011; Veh et al. 2015), and arthritis (Hazariwala et al. 2002), edema dermatitis (Miwa et al. 2006; Van Gessel et al. 2004), and sepsis (Asgeirsson et al. 2018; Van Gessel et al. 2004) in animals. Furthermore, SEs are a major cause of food poisoning, which typically occur after ingestion of food contaminated with S. aureus. Symptoms of food poisoning rapid onset, include nausea and violent vomiting, with or without diarrhea (Bergdoll 1988; Hu et al. 1999, Hu et al., 2003a, b, Hu et al., 2017; Suzuki et al. 2020). In addition, recent studies reported that SAg-modified vaccines showed therapeutic effects in melanoma-bearing mice and had a strong protective effect against wild-type melanoma challenge (Kato et al. 2011; Huang et al. 2004; Ma et al. 2004). These studies demonstrated that SAg-modified vaccines could induce a potent tumor-antigen-specific immune responses, which provided a novel approach for bridging specific and non-specific immunity for tumor therapy (Kato et al. 2011; Miller et al. 2020; Shimizu et al. 2003). In this review, we focus and discuss the highly important superfamily members of classsic and novelly identified SAg toxins produced by S. aureus, and presents new informations on biological characteristics, gene locations and molecular structures, and multiple pathogenesities of SAg toxins in human and animal diseases.

Table 1 Characteristic and pathogenicity of staphylococcal superantigen toxins

Superfamily members of SAg toxins

S. aureus produces a large variety of T-cell superantigens, including TSST-1 that induce toxic shock syndrome (TSS), SEs that are important causive toxins of food poisoning, and SEls that are not emetic in primate models. It also produces B-cell superantigens, such as staphylococcal protein A (SpA), that capable of interacting with both antibody Fc and Fab regions of VH3+ immunoglublins (Ig).

SEs and SEls

Since Bergdoll and Casman characterized SEA, 5 SEs (SEA to SEE) have been identified due to the antigenic differences (Bergdoll et al. 1965; Bergdoll et al. 1971). Of them, SEC was further subdivided into 3 subtypes, SEC1, SEC2 and SEC3 (Bergdoll et al. 1973). Since the 1990s, many new types of SEs and SEls were discovered by our research group (Omoe et al. 2003; Ono et al. 2008, 2015; Suzuki et al. 2020) and other researchers (Aguilar et al. 2014; Letertre et al. 2003; Munson et al. 1998; Orwin et al. 2001, 2003; Su and Wong 1995; Thomas et al. 2006; Wilson et al. 2011; Zhang et al. 2018). The International Nomenclature Committee for Staphylococcal Superantigens (INCSS) proposed a standard nomenclature for newly discovered toxins to emphasize the emetic activity of toxins (Lina et al. 2004; Omoe et al. 2013). In order to name SE, the emetic activity must be demonstrated by oral administration to monkeys. If the emesis-inducing potential is not shown in vomiting experiments of the primate model, or vomiting experiments have not yet been carried out, the toxin should be named as “staphylococcal enterotoxin-like (SEl) toxin”, even though the superantigen toxin is considered closely related to SE structure (Lina et al. 2004).

Omoe et al. (2013) used monkey feeding test to evaluate the emetic activity of some newly discovered SEls, including SElK, SElL to SElN, and SElO to SElQ. The results showed that all tested SEls induced emetic responses in monkeys at a dose of 100 μg/kg, indicating that these newly indentified SEls have emetic activity. Acording to the INCSS naming convention, these new SEls should be re-designated as SEK, SEL, SEM, SEN, SEO, SEP and SEQ, respectivily. A new staphylococcal emetic toxin, SElY, which showed strong emetic activity in a small emetic animal model but low superantigen activity, was reported by Ono et al. (2015). Later, Zhang et al. (2018) reported 2 novel SEls, SEl26 and SEl27, which present in S. aureus, S. argenteus and S. schweitzeri. More recently, Our research group reported a novel SE, SE02, that isolated from a food poisoning case in Japan (Suzuki et al. 2020). To date, SEs and SEls have become a superfamily with 29 types of toxins (Fig. 1).

Fig. 1
figure1

Superfamily members of SAg toxins and the grouping based on amino acid sequence comparison. SE, staphylococcal enterotoxins. SEA group are showed in red; SEB Group are showed in black; SEI Group are showed in green and the other toxins are showed in blue. This figure was prepared and modified from Hu et al. (2018) and Suzuki et al. (2020)

TSST-1

Todd et al. (1978) reported a toxin that induces TSS (toxic shock syndrome) caused by S. aureus infection, and named as SEF. However, SEF does not have emetic activity, later it was renamed TSST-1 (Bergdoll et al. 1981; Edwin and Kass 1989; Reiser et al. 1983). TSST-1 is a 22 kDa extracellular protein secreted by S. aureus. Its physical and chemical properties are very similar to those of SEs. TSST-1 is a T cell superantigen which stimulates polyclonal T-cell proliferation through co-ligation between MHC class II molecules on APC and T-cell receptor β (TCR Vβ) without prior antigen-present processing. It has unique primary amino acid sequence and contains only a low-affinity MHC II binding site in O/B folds that interacts with α-chains of MHC II molecules (Kozono et al. 1995; Saline et al. 2010). Toxin-activated APC/T-cells lead to the release of various cytokines and chemokines, enhance endotoxic shock, and cause T-cell and B-cell immunosuppression, fever, rash, vascular disorders, toxic shock syndrome, multiple organ failure, and lower blood pressure in humans and animals (Hu et al. 2003a; Krakauer, 2019; Schlievert et al. 2019).

SpA protein

SpA produced by S. aureus is a B cell superantigen which capable of interacting with both antibody Fc and Fab regions of VH3+ immunoglublins (Ig). Gene spa is encoded in the core genome of most clinical isolates. SpA proteins can be released from bacterial cell wall by hydrolase LytM (Becker et al. 2014; Shopsin et al. 1999). It has 2 distinct Ig-binding sites: one for IgG Fc domains, while another separate site binds an evolutionarily conserved surface on Fab encoded by VH3 clan related genes. SpA contains 4–5 highly conserved Ig binding domains and X hypervariable regions composed of sub-regions Xr and Xc (Guss et al. 1984; Kim et al. 2012). S. aureus isolates can be classified by the highly variable and repetitive octapeptides in Xr of SpA (Shopsin et al. 1999). Ig-binding domain on SpA molecule confers binding capacity of SpA to Fcγ portion of Ig and prevents the opsonization of host cells (Becker et al. 2014). Ig-binding domains can also mediate the binding of SpA to B cells by cross-linking VH3-expressing B cell receptors and activate B cells. SpA exerts mitogenic activity by binding to the variable regions of heavy chain, rather than complementarity-determining regions required for common antigens, thereby bypassing the antigen specificity required for B cell activation (Graille et al. 2000; Silverman and Goodyear, 2006). It represents a paradigm relevant to other microbial toxins with unconventional V region targeted activity in S. aureus and other microbial pathogens (Keener et al. 2017; Pauli et al. 2014). As a B-cell superantigen, SpA may be very effective in destroying host defense and is necessary for the continued existence of S. aureus in nasopharynx (Sun et al. 2018).

Diversity of gene location and molecular structure of SAg toxins

Genes of SAg toxins are encoded by diverse accessory genetic elements, and many of them are harbored by numerous mobile elements, including S. aureus pathogenicity islands (SaPIs), genomic islands (υSa), prophages and plasmids. Except SaPIbov2 (27 kb) and a highly degenerated SaPI (3.14 kb), SaPIs can be find in some sequenced genomes (Alibayov et al. 2014; Lindsay et al. 1998; Tallent et al. 2007). Some SaPIs carry genes encoding one or more SEs, such as, sek and seq are found together with tst in SaPI1; sel and sec are found in SaPIbov1; seb, seq and sek have been reported in SaPI3 (Alibayov et al. 2014; Novick and Subedi 2007; Sato'O et al., 2013, Sato'O et al., 2014). It has been found that strains carrying different SaPIs produce SAg toxins in significantly different ways (Sato'O et al., 2013, Sato'O et al., 2014). Gene islands υSaα and υSaβ contain gene clusters encoding virulence factors. υSaβ has an enterotoxin gene cluster (egc), which form an operon containing various number of se or sel genes. Enterotoxin gene cluster 1 (egc1) consists of 5 se genes (seg, sei, sem, sen and seo) (Monday and Bohach 2001; Hu et al. 2017). egc2 contains an additional sel gene (selu) (Letertre et al. 2003). The allelic variants of each egc2 gene forms egc3 cluster (Collery et al. 2009; Letertre et al. 2003), and egc4 consists of 2 new sel genes (selv, selw) (Thomas et al. 2006).

SEs genes can also be carried by prophages. Three se/sel genes (sea, selk and selq) are present together in ϕSa3ms and ϕSa3mw, while a single se/sel gene (sea or sep) is carried by ϕMu3A, ϕSa3a or other prophages (Betley and Mekalanos 1985; Coleman et al. 1989; Zeaki et al. 2015). Two plasmids carrying se/sel genes have been identified. A 27.6 kb plasmid pIB485 encodes sed, selj and ser (Couch et al. 1988; Omoe et al. 2003; Ono et al. 2008), and another plasmid pF5 carries selj, ser, ses and set (Ono et al. 2008).

According to the homology of nucleotide and anino acid sequences, SAg toxins can be classified into several groups (Fig. 1). SEA group includes SEA, SED, SEE, SEH, SElJ, SEN, SEO, SEP, SES and SE01. Toxins of SEA group contain a cystine loop with 9 amino acids (Fitzgerald et al. 2003; Spaulding et al. 2013). These toxins have a low-affinity α-chain MHC II binding site and a high-affinity Zn2+-dependent β-chain MHC II binding site (Fitzgerald et al. 2003; Petersson et al. 2002). The presence of Zn2+-dependent high-affinity site makes them 10- to 100-fold more active overall in causing cytokine production from T cells and APCs than other SAg toxins. SEB group includes SEB, SEC, SEG, SER, SElU, SElW, SElZ and SE02. Toxins of this group contain a core superantigen structure plus a cystine loop that has a varying 10 to 19 amino acid sequence separating the cysteine residues (Fitzgerald et al. 2003; Hovde et al., 1994). SEI group includes SEI, SEK, SEL, SEM, SEQ and SElV, and the toxins of this group contain both low- and high-affinity MHC II binding sites, but lack the cystine loop (Günther et al. 2007; Orwin et al. 2001, 2002, 2003; Su and Wong 1995). These toxins contain one binding site with α-chain of MHC II, and the interaction between toxin and MHC II molecule does not depend on the antigenic peptide within MHC II peptide-binding groove (Jardetzky et al. 1994; Letertre et al. 2003).

Despite differences in amino acid sequence homology among SEs, SEls and TSST-1, these toxins share common phylogenetic relationships, secondary and tertiary structures, and biological activities (Fig. 2). The three-dimensional structures of SEs and SEls show very similar conformation that the canonical structure consists of 1 A domain and 1 B domain, and 1 α-helix that spans the center of the structure and connects A and B domains (Swaminathan et al. 1992, 1995). A set of α helices mark the interface between A and B domains. The helices form a shallow cavity on the top and a long groove on the back of the molecule (Hu et al. 2018; Swaminathan et al. 1995) (Fig. 2A).

Fig. 2
figure2

Characteristics and activities of SAg toxins. A Three-dimensional structures of SEA, SEB and SEC as representative of SAg toxins. B Diagram of superantigen (left) and normal antigen (right) bind to MHC class II of APC and T-cell receptor, CD28 molecules. C Superantigenic activities of SAg toxins, that induce massive cytokine production and subsequently cause inflammation and toxic shock in humans and animals. This figure was prepared and modified from Hu et al. (2014, 2018). SE, staphylococcal enterotoxins; APC, antigen-presenting cells; MHC, major histocompatibility comlex; TCR, T-cell antigen receptor

Biological characteristics and activities of SAg toxins

SAg toxins are single-chain proteins, which have significant resistance to heat-treatment and enzymatic degradation (Li et al. 2011; Maina et al. 2012; Suzuki et al. 2020). They are highly stable to most proteolytic enzymes to retain their toxic activity in the digestive tract after ingestion. Several studies have compared the respective integrity and toxicity of SEA and TSST-1 after treatment with heat, pepsin or trypsin in relation to the condition of food cooking or luminal location in stomach or intestine (Li et al. 2011; Suzuki et al. 2020). SEA retained significant superantigenic and emetic activities after treatment with heat or pepsin, indicating that cooked foods contaminated with the toxins may still cause food poisoning (Li et al. 2011).

SEs are the leading cause of foodborne bacterial intoxications worldwide (Genigeorgis, 1989; Hu et al., 2017; Mead et al. 1999; Tauxe 2002). Among them, SEA is the most frequently detected SEs from food poisoning outbreaks in many countries (Kitamoto et al. 2009; Suzuki et al. 2020; Veras et al. 2008; Wieneke et al. 1993). The typical clinical symptoms of staphylococcal food poisoning are vomiting, abdominal cramps, nausea and sometimes diarrhea within a few hours after ingesting contaminated foods (Bergdoll, 1988; Fisher et al. 2018; Hu et al. 1999). In contrast to the well-known clinical manifestations of food poisong, little is known about physiopathology of the symptoms and mechanisms of emetic activity of SEs. The reason of lacking progress in these research is partially attributed to the limited convenient and appropriate animal models. Monkeys are considered to be the primary animal model, but due to the high cost, availability of animals, and ethical considerations, the use in mechanism investigatingof SEs is severely restricted. Other animal models such as mouse, rat, rabbit, pig and cat are less susceptible to SEs or their responses to SEs are not specific (Bergdoll 1988; Normann et al. 1969; Hu et al. 1999; Stiles and Denniston 1971). Hu et al. reported that house musk shrew is a usefull small-scale emetic-inducing animal model for SEs. All tested SEs and SEls caused vomiting responses in house musk shrews (Hu et al. 1998, 1999, 2003b, Hu and Nakane, 2014; Omoe et al. 2013). Recent studies investigated the behavior of SEA in the gastrointestinal tract of house musk shrew and common marmoset, suggesting that submucosal mast cells in the gastrointestinal tract are one of the target cells of SEs. Histamin and serotonine (5-HT) released from submucosal mast cells play an important role in SE-induced emesis (Hirose et al. 2016; Hu et al. 2007; Ono et al. 2012, 2019). In addition, vagotomy prevented vomiting caused by SEA in the emetic-inducing animal model, indicating that 5-HT may bind to 5-HT3 receptors, expressed on the enteric nerves of the gastrointestinal tract, thereby causing these nerves to deprive polarization (Hu et al. 2007; Ono et al. 2017, 2019). SEA can also induce the increase of intracellular calcium ([Ca2+] i) in intestinal epithelial cells, due to the storage of intracellular calcium in cells (Hu et al. 2005b).

SAg toxins can cross-link MHC class II and T-cell receptors, stimulating large numbers of T cells activation, and sudden cytokines and chemokines storm which lead to the life-threatening condition such as toxic shock syndrome and various inflamations (Fig. 2B, C). Cytokines include interleukin-1 (IL-1), IL-2, interferon-γ (IFN-γ), tumor necrosis factora (TNF-α) and TNF-β, etc. (Jupin et al., 1988; McCormick et al., 2001; Trede et al. 1991). TNF-α and IL-1 are induced early and are direct mediators of fever, hypotension and shock (Jupin et al., 1988; Trede et al. 1991). IFN-γ produced by the activated T-cells acts synergistically with TNF-α and IL-1, enhancing host defense by establishing an inflammatory environment for T-cell activation and differentiation (Krakauer 2019; McCormick et al., 2001). It was found that IL-17A produced by SAg-activated CD4+ effector memory T cells was rapidly induced in human PBMC exposed to SEs (Szabo et al. 2017). IL-17 is known to have proinflammatory effects and induces tissue damage in various autoimmune diseases. Early induction of IL-17 likely contributes to mortality, hepatotoxicity and organ damage similar to IL-1 (Krakauer 2019; Narita et al. 2019; Szabo et al. 2017). SAg-activated host cells also produce other tissue-damaging molecules, such as matrix metalloproteinases (MMPs) and tissue factors, affecting both inflammatory and coagulation pathways. Neutrophils activated by SAg can produce reactive oxygen species (ROS), thereby increasing vascular permeability and lung damage (Krakauer, 2019; McKay et al. 2000).

Multi-pathogenicity of SAg in animal and human diseases

S. aureus, which produces SAg toxin, is an important pathogen related to serious community and hospital-acquired diseases, and has long been considered as a major problem of public health (Kérouanton et al. 2007; Martin et al. 2004; Mead et al. 1999; Normanno et al., 2005; Pesavento et al. 2007). SAg-producing MRSA (meticillin-resistant S. aureus) is currently important for nosocomial infections and food-borne diseases worldwide because of its global spreading and difficulty in therapy (Abdi et al. 2018; Hu et al. 2008, 2011; Omoe et al., 2005a, b). MRSA and MSSA (meticillin-susceptible S. aureus) isolates from different patients were comprehensively searched using multiplex PCR for toxin gene family. Both isolates carried a number of SAg genes, but MRSA isolates harboured more SAg genes than MSSA isolates. The most frequent genotypes of MRSA isolates were sec, sel and tst-1 together with gene combination seg, sei, sem, sen and seo (Hu et al. 2008, 2011). Coexistence of SAg toxins and SCC genes in S. aureus may contribute to the biological fitness and pathogenicity of MRSA (Calderwood et al. 2014; Hu et al. 2011).

SAg-producing S. aureus is also an important etiological agent of animal diseases such as clinical and subclinical bovine mastitis, swine sepsis, abscesses and skin edema in pig, lethality in rabbits, arthritis and septicemia in poultry (Table 2). It is an exceptionally successful and adaptive animal pathogen that can cause epidemics of invasive diseases (Katsuda et al. 2005; Miwa et al. 2006; Veh et al. 2015). The most important virulence factor associated with this microorganism may be heat-stable and enzyme-resistant abilities (Krakauer 2019; Hu et al. 2008; Suzuki et al. 2020).

Table 2 Multi-pathogenicity of SAg toxins in human and animal diseases and the application in vaccines

Bovine mastitis and endometritis

Bovine mastitis is a major disease of dairy cows, which has a great impact on the dairy industry and brings significant economic losses (Hata et al. 2010; Li et al. 2017; Wolf et al. 2011; Zaatout et al. 2020). S. aureus is the most frequently recovered pathogen from mastitis cases (Hata et al. 2010; Ote et al. 2011; Ren et al. 2020), and responsible for subclinical and persistent intramammary infections. Multiple studies reported the diversity of genotype and phenotype of S. aureus strains obtained from bovine mastitis (Haveri et al. 2005; Suleiman et al, 2018; Piccinini et al. 2012; Ronco et al. 2018; Veh et al. 2015). sec and tst or their combined presence in S. aureus isolated from bovine mastitis suggested that these strains contained pathogenicity island SaPIbov (Fitzgerald et al. 2001; Leuenberger et al. 2019). Some other studies showed that the presence of seg or sen and sec or tst could also occur alone (Haveri et al. 2007; Mitra et al. 2013; Wang et al. 2009; Wang et al. 2017). In genetic analysis of bovine S. aureus isolates from bovine mastitis cases by PCR, a total of 270 S. aureus strains presented genes encoding SEs, SEls and TSST-1. About 183 (67.8%) bovine isolates possessed either 1 or more SAg toxin genes and the most common pattern was tst, sec, seg and sei. Further, 161 isolates possessed at least 2 SAg genes (Katsuda et al. 2005; Hata et al. 2006). S. aureus strains isolated from bovine mastitic milk were separated into 60 patterns and 16 lineages by pulse field gel electrophoresis, and the most common combinations of toxin genes were sec, seg, sei, sel, and tst; or seg and sei; or sec, seg, sei, sel, sen and tst (Hata et al. 2010; Hoekstra et al. 2020; Li et al. 2017; Ren et al. 2020). The predominant isolate possessed SAg toxin genes supporting the theory that SAg toxins are important for udder pathogenesis of bovine mastitis. Furthermore, recent studies (Fang et al. 2019) demonstrated that SEC can directly cause inflammation, proinflammatory cytokine production and tissue damage in mammary glands, suggesting that SEC might play an important role in the development of mastitis associated with S. aureus infection.

Clinical endometritis, which leads to decreased reproductive performance, is also an important disease in dairy cows (Jiang et al. 2019; Zhao et al. 2014). Zhao et al. investigated SAg gene distribution of staphylococcal isolates in uterus of cows with clinical endometritis. PCR analysis showed that most of isolates (63.0%) had at least 1 SAg gene. The most common SAg genes and genotypes were selj and sec-selj-sen (Zhao et al. 2014). These results indicated that Staphylococci recovered from cows with clinical endometritis contained extensive and complex SAg genes, suggesting that SAg may contribute to the pathogenicity of bacteria in bovine endometritis.

Staphylococcal septicemia

Van Gessel et al. (2004) reported that clinical signs of piglets receiving intravenous SEB were biphasic, accompanied by fever, vomiting and diarrhea, followed by terminal hypotension and shock. Lymphoid lesions were identified with severe lymphadenopathy, splenomegaly and obvious Peyer’s patches. Extensive edema was found in animals, most notably in mesenteric and retroperitoneal connective tissue. Additional histologic changes included perivascular aggregates of large lymphocytes variably present in lung and brain, circulating lymphoblasts, and lymphocytic portal hepatitis. Preliminary molecular studies using gene arrays found changes in several gene profiles that may have an impact on pathophysiology that leads to irreversible shock. Five genes were selected for further studies, all of which showed increased mRNA levels after SEB exposure. Miwa et al. (2006) evaluated blood adsorption effect of SAg (TSST-1) adsorption equipment in septic pigs, and proposed the potential application of superantigen adsorption equipment in the treatment of SAg-induced respiratory dysfunction and sepsis.

Activities of SAg toxins have many systemic effects on people and animals. A large number of patients and animals develop sepsis after staphylococcal pneumonia and infective endocarditis or following surgery. Studies showed that certain SAgs, especially SEA, SEC and TSST-1 are overepresented in sepsis cases compared with non-sepsis animals or patients (Dauwalder et al. 2006; Ferry et al. 2005). SAg toxins are likely to be produced in infected lesions protected by hemoglobin peptides and then secreted into the bloodstream (Schlievert et al. 2007; Asgeirsson et al. 2018).

Staphylococcal pneumonia

Previous tudies showed that S. aureus necrotizing pneumonia in children was associated with the emergent CA-MRSA USA400 clonal group, which produced SEB and SEC (Fey et al. 2003; Spaulding et al. 2013). Subsequent studies showed that these 2 SEs were almost always present in CA-MRSA USA400 strains. When purified SEB and SEC were installed intrapulmonarily, they induced hemorrhagic lung lesions, respiratory distress, and lethal TSS in rabbit model (Strandberg et al. 2010). TSST-1 stimulates human bronchial epithelial cells to express high levels of proinflammatory molecules, TNF-α and IL-8 (Aubert et al. 2000). The newly discovered SElX (Wilson et al. 2011) appears to be critical for the development of necrotizing pneumonia and lethal TSS in rabbits. Furthermore, vaccination against TSST-1, SEB or SEC provide protection against highly lethal doses of S. aureus strains that producing respective SAgs (Strandberg et al. 2010).

Staphylococcal infective endocarditis

Staphylococcal infective endocarditis occurs most often in areas of pre-existing heart damage, usually involving valves. Research showed that, as many as 90% infective endocarditis isolates of S. aureus produce TSST-1 (Nienaber et al. 2011; Wang et al. 2018). TSST-1 is critical for development of infective endocarditis as tested in rabbits using isogenic strains (Pragman et al. 2004). Staphylococci initially colonize damaged endothelial cells to initiate infective endocarditis (Asgeirsson et al. 2018). TSST-1 and SEC then interact with host cells to affect endothelial wound healing by directly acting on endothelial cells (Lee et al. 1991). TSST-1 is toxic to porcine aortic endothelial cells. SAg toxins can also cause mild or severe capillary leakage and change blood flow in the initially damaged part of heart, thereby enhancing vegetation formation (Asgeirsson et al. 2018). The use of passive neutralization of SEC in CA-MRSA USA400 strain MW2 and administration of Vβ-TCRs specific for SEC can prevent the development of cardiac vegetations (Mattis et al. 2013).

Staphylococcal food poisoning (SFP)

SFP resulted from the ingestion of one or more SEs produced in foods by S. aureus. The first well-documented report which clearly identified SEs as the cause of food poisoning outbreaks was done by Rosenau and Mccoy (1931). They isolated the pathogenic bacterium S. aureus from Christmas cake that caused food poisoning outbreak, and proved that the sterile filtrate obtained from the microbial growth broth could cause the same disease when ingested by human volunteers (Rosenau and Mccoy 1931; Bergdoll et al. 1965). Initially, SEA to SEE types were identified and reported in the literature (Bergdoll et al. 1965; Casman et al. 1967). Since the 1990s, a lot of new types of SAg toxins have been identified and designated in S. aureus strains isolated from food poisoning cases (Lina et al. 2004; Ono et al. 2015; Suzuki et al. 2020; Wang et al. 2018). All SEs, but not SEls, cause emesis when administered orally to primates. SEA was the most common SE recovered from food poisoning outbreaks in many countries (Kirk et al. 2014; Kitamoto et al. 2009; Veras et al. 2008; Wieneke et al. 1993). Symptoms of SFP are vomiting, abdominal cramps, nausea, and sometimes followed by diarrhea after a short period of incubation (Bergdoll 1988; Hu et al. 1999, Hu et al., 2003a, b; Ono et al. 2019). Although SEs do not show cytotoxic activity on intestinal epithelial cells in morphological characteristics (Buxser and Bonventre, 1981), they can pass through the intestinal epithelium in an immunologically intact form, and participate in the initiation, exaggeration and reactivation of intestinal inflammatory diseases (McKay and Singh 1997; McKay et al. 2000).

Toxic shock syndrome (TSS)

TSS is caused by the activation of a large number of T cells induced by SAg, resulting in a cytokine storm (Krakauer 2019; McCormick et al., 2001). It is a capillary leak syndrome, in which patients have fever, rash, hypotension, multiorgan involvement and convalescent desquamation (Gossack-Keenan and Kam 2020; McCormick et al. 2001). SAg TSST-1 was related to menstrual form of TSS in 1981 (Bergdoll et al. 1981; Schlievert et al. 1981), while other SAgs, primarily SEB and SEC, could cause non-menstrual TSS forms (Bohach et al. 1990; McCormick et al. 2001). Literatures showed that 50% nonmenstrual TSS cases were caused by USA200 and related strains produced TSST-1, and the remaining 50% strains nearly always produced SEB or SEC (Gossack-Keenan and Kam 2020; Schlievert and Kim 1991, Schlievert et al. 2004). Immunization with mutant SEC and TSST-1 can provide protection against S. aureus infection and toxic shock in mouse models (Hu et al. 2003a, 2005a; Narita et al. 2019).

Kawasaki disease

Kawasaki disease was first described by Tomisaku Kawasaki in 1967 and has now become the main cause of acquired heart disease in children in developed countries (van Crombruggen et al., 2011; Yeung 2010). It is an acute self-limiting vasculitis that usually affects the coronary arteries and is thought to be triggered by infectious agents in genetically susceptible people. There is convincing evidence that bacterial SAgs are involved and may be related to host genetic factors (Matsubara and Fukaya 2007; Nagata 2019). SAgs toxins also present in Kawasaki-like syndrome, and mainly occur in adults with severe immunosuppression including HIV/AIDS (Stankovic et al. 2007).

Chronic rhinosinusitis

Chronic rhinosinusitis can occur with or without nasal polyps, and accumulated evidence is now convincing that SAgs form S. aureus can cause chronic rhinosinusitis with nasal polyposis (Cheng et al. 2017; Dobretsov et al. 2019; Poddighe and Vangelista, 2020; Van Zele et al. 2004; Wagner Mackenzie et al. 2019). It is believed that SAgs can tilt the response of cytokines to the T helper 2 phenotype, thereby inducing eosinophilia and polyclonal IgE production, which may be further related to asthma (Bachert et al. 2010; Delemarre et al. 2020; Flora et al. 2019; Stow et al, 2010; Van Zele et al. 2008).

Staphylococcal arthritis

S. aureus also causes invasive diseases such as arthritis and septicemia in poultry. SAg-producing S. aureus can be isolated from chickens suffering from dermatitis and septicemia, pneumonia, arthritis and tenosynovitis (Terzolo and Shimizu, 1979). SEs have also been associated with other S. aureus illnesses in domestic poultry and other avian species. Many studies reported that sea, seb and sec genes were found in S. aureus isolates associated with invasive disease in poultry (Hazariwala et al. 2002, Mojahed Asl et al. 2019).

Atopic dermatitis

Atopic dermatitis is a chronic recurrent highly itchy inflammatory skin disease and a prelude to the development of food allergies, asthma or allergic rhinitis. Skin infections caused by S. aureus exacerbate skin diseases in patients with atopic dermatitis and change host response to environmental allergens and viral pathogens, which may be due to both the damaged skin barrier and impaired host immune responses (Aziz et al. 2020; Kawakami et al. 2009; Kim et al. 2019). Significant evidences indicated that SAg plays an important role in exacerbating the disease (Aziz et al. 2020; Schlievert et al. 2010). It is known that SAgs induced skin homing receptor cutaneous lymphocyte-associated antigen on T cells, thereby recruited these cells to the skin (Leung et al. 1995; Seiti Yamada Yoshikawa et al. 2019). Recent evidence suggested that phenotypic Treg (CD4+ FoxP3+) cells homing from a patient’s skin might actually show type 2 T helper cells that respond to SEB stimulation (Lin et al. 2011; Suwarsa et al., 2017a, b). Patients may also develop anti-SAg IgE antibodies which can further worsen the condition (Bunikowski et al. 1999).

Conclusion

The large family of SAg toxins continues to grow. The most interesting question in this field remains why S. aureus possesses such a large, genetically and antigenically distinct, extremely effective, and seemingly redundant group of toxins. Although many studies have investigated the existence of a large number of SAg toxins in S. aureus, and analyzed the correlation of specific SAg genes with specific clinical syndromes, the existence of genes are not equivalent to the actual expression and function of toxins. SAgs act as both superantigen toxin and potent gastrointestinal toxin. Although the evolutionary function in S. aureus life cycle remains unclear, these prominent SAg toxins obviously represent highly unique and well adaptable virulence factors. An open question remains if these separate functions of SAg are related. It is still unclear how these toxins enter body via intestine, induce emetic responses in human and animals, and what is the receptor of target cells in intestine and/or nervous system for SE-induced emesis. Understanding the complex biology and relationship of different functions of SAg toxins will undoubtedly answer many of these important questions. Continued efforts into understanding the mechanisms of subversion immune response by S. aureus will not only lead to new insights into the pathophysiology of infections and antimicrobial strategies, but also help to improve the prediction of invasive diseases and propose new targets for therapeutic intervention.

Availability of data and materials

Not applicable.

References

  1. Abdi, R.D., B.E. Gillespie, J. Vaughn, C. Merrill, S.I. Headrick, D.B. Ensermu, D.H. D'Souza, G.E. Agga, R.A. Almeida, S.P. Oliver, et al. 2018. Antimicrobial resistance of Staphylococcus aureus isolates from dairy cows and genetic diversity of resistant isolates. Foodborne Pathogens and Disease 15 (7): 449–458. https://doi.org/10.1089/fpd.2017.2362.

    CAS  Article  PubMed  Google Scholar 

  2. Aguilar, J.L., A.K. Varshney, X.B. Wang, L. Stanford, M. Scharff, and B.C. Fries. 2014. Detection and measurement of staphylococcal enterotoxin-like K (SEl-K) secretion by Staphylococcus aureus clinical isolates. Journal of Clinical Microbiology 52 (7): 2536–2543. https://doi.org/10.1128/JCM.00387-14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Alibayov, B., K. Zdenkova, H. Sykorova, and K. Demnerova. 2014. Molecular analysis of Staphylococcus aureus pathogenicity islands (SaPI) and their superantigens combination of food samples. Journal of Microbiological Methods 107: 197–204. https://doi.org/10.1016/j.mimet.2014.10.014.

    CAS  Article  PubMed  Google Scholar 

  4. Asgeirsson, H., A. Thalme, and O. Weiland. 2018. Staphylococcus aureus bacteraemia and endocarditis - epidemiology and outcome: A review. Infectious Disease and Therapy 50 (3): 175–192. https://doi.org/10.1080/23744235.2017.1392039.

    Article  Google Scholar 

  5. Aubert, V., D. Schneeberger, A. Sauty, J. Winter, P. Sperisen, J.D. Aubert, and F. Spertini. 2000. Induction of tumor necrosis factor alpha and interleukin-8 gene expression in bronchial epithelial cells by toxic shock syndrome toxin 1. Infection and Immunity 68 (1): 120–124. https://doi.org/10.1128/iai.68.1.120-124.2000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Aziz, F., J. Hisatsune, L. Yu, J. Kajimura, Y. Sato'o, H.K. Ono, K. Masuda, M. Yamaoka, S.I.O. Salasia, A. Nakane, et al. 2020. Staphylococcus aureus isolated from skin from atopic-dermatitis patients produces staphylococcal enterotoxin Y, which predominantly induces T-cell receptor Vα-specific expansion of T cells. Infection and Immunity 88: e00360–e00419. https://doi.org/10.1128/IAI.00360-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bachert, C., N. Zhang, G. Holtappels, L. De Lobel, P. van Cauwenberge, S.X. Liu, P. Lin, J. Bousquet, and K. van Steen. 2010. Presence of IL-5 protein and IgE antibodies to staphylococcal enterotoxins in nasal polyps is associated with comorbid asthma. The Journal of Allergy and Clinical Immunology 126 (5): 962–968. https://doi.org/10.1016/j.jaci.2010.07.007.

    CAS  Article  PubMed  Google Scholar 

  8. Becker, S., M.B. Frankel, O. Schneewind, and D. Missiakas. 2014. Release of protein a from the cell wall of Staphylococcus aureus. Proceedings of the National Academy of Sciences of the United States of America 111 (4): 1574–1579. https://doi.org/10.1073/pnas.1317181111.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bergdoll, M., R. Reiser, B. Crass, R. Robbins, and J. Davis. 1981. A new staphylococcal enterotoxin, enterotoxin F, associated with toxic-shock-syndrome Staphylococcus aureus isolates. Lancet 317 (8228): 1017–1021. https://doi.org/10.1016/S0140-6736(81)92186-3.

    Article  Google Scholar 

  10. Bergdoll, M.S. 1988. Monkey feeding test for staphylococcal enterotoxin. Methods in Enzymology 165: 324–333. https://doi.org/10.1016/S0076-6879(88)65048-8.

    CAS  Article  PubMed  Google Scholar 

  11. Bergdoll, M.S., C.R. Borja, and R.M. Avena. 1965. Identification of a new enterotoxin as enterotoxin C. Journal of Bacteriology 90 (5): 1481–1485. https://doi.org/10.1128/JB.90.5.1481-1485.1965.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Bergdoll, M.S., C.R. Borja, R.N. Robbins, and K.F. Weiss. 1971. Identification of enterotoxin E. Infection and Immunity 4 (5): 593–595. https://doi.org/10.1128/IAI.4.5.593-595.1971.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Bergdoll, M.S., R.N. Robbins, K. Weiss, C.R. Borja, Y. Huang, and F.S. Chu. 1973. The staphylococcal enterotoxins: Similarities. Contributions to Microbiology and Immunology 1: 390–396.

    CAS  PubMed  Google Scholar 

  14. Betley, M.J., D.W. Borst, and L.B. Regassa. 1992. Staphylococcal enterotoxins, toxic shock syndrome toxin and streptococcal pyrogenic exotoxins: A comparative study of their molecular biology. Chemical Immunology 55: 1–35.

    CAS  PubMed  Google Scholar 

  15. Betley, M.J., and J.J. Mekalanos. 1985. Staphylococcal enterotoxin A is encoded by phage. Science 229 (4709): 185–187. https://doi.org/10.1126/science.3160112.

    CAS  Article  PubMed  Google Scholar 

  16. Bohach, G.A., D.J. Fast, R.D. Nelson, and P.M. Schlievert. 1990. Staphylococcal and streptococcal pyrogenic toxins involved in toxic shock syndrome and related illnesses. Critical Reviews in Microbiology 17 (4): 251–272. https://doi.org/10.3109/10408419009105728.

    CAS  Article  PubMed  Google Scholar 

  17. Bunikowski, R., M. Mielke, H. Skarabis, U. Herz, R.L. Bergmann, U. Wahn, and H. Renz. 1999. Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. The Journal of Allergy and Clinical Immunology 103 (1): 119–124. https://doi.org/10.1016/S0091-6749(99)70535-X.

    CAS  Article  PubMed  Google Scholar 

  18. Buxser, S., and P.F. Bonventre. 1981. Staphylococcal enterotoxins fail to disrupt membrane integrity or synthetic functions of Henle 407 intestinal cells. Infection and Immunity 31 (3): 929–934. https://doi.org/10.1128/IAI.31.3.929-934.1981.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Calderwood, M.S., C.A. Desjardins, G. Sakoulas, R. Nicol, A. DuBois, M.L. Delaney, K. Kleinman, L.A. Cosimi, M. Feldgarden, A.B. Onderdonk, et al. 2014. Staphylococcal enterotoxin P predicts bacteremia in hospitalized patients colonized with methicillin-resistant Staphylococcus aureus. The Journal of Infectious Diseases 209 (4): 571–577. https://doi.org/10.1093/infdis/jit501.

    CAS  Article  PubMed  Google Scholar 

  20. Casman, E.P., R.W. Bennett, A.E. Dorsey, and J.A. Issa. 1967. Identification of a fourth staphylococcal enterotoxin, enterotoxin D. Journal of Bacteriology 94 (6): 1875–1882. https://doi.org/10.1128/jb.94.6.1875-1882.1967.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Cheng, K.J., Y.Y. Xu, M.L. Zhou, S.H. Zhou, and S.Q. Wang. 2017. Role of local allergic inflammation and Staphylococcus aureus enterotoxins in Chinese patients with chronic rhinosinusitis with nasal polyps. The Journal of Laryngology and Otology 131 (8): 707–713. https://doi.org/10.1017/S0022215117001335.

    Article  PubMed  Google Scholar 

  22. Choi, Y., A. Herman, D. DiGiusto, T. Wade, P. Marrack, and J. Kappler. 1990. Residues of the variable region of the T-cell-receptor β-chain that interact with S. aureus toxin superantigens. Nature 346 (6283): 471–473. https://doi.org/10.1038/346471a0.

    CAS  Article  PubMed  Google Scholar 

  23. Coleman, D.C., D.J. Sullivan, R.J. Russell, J.P. Arbuthnott, B.F. Carey, and H.M. Pomeroy. 1989. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: Molecular mechanism of triple conversion. Journal of General Microbiology 135 (6): 1679–1697. https://doi.org/10.1099/00221287-135-6-1679.

    CAS  Article  PubMed  Google Scholar 

  24. Collery, M.M., D.S. Smyth, J.J.G. Tumity, J.M. Twohig, and C.J. Smyth, 2009. Associations between enterotoxin gene cluster types egc1, egc2 and egc3, agr types, enterotoxin and enterotoxin-like gene profiles, and molecular typing characteristics of human nasal carriage and animal isolates of Staphylococcus aureus. J. Med. Microbiol. 58 (Pt 1):13-25. https://doi.org/10.1099/jmm.0.005215-0.

  25. Couch, J.L., M.T. Soltis, and M.J. Betley. 1988. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. Journal of Bacteriology 170 (7): 2954–2960. https://doi.org/10.1128/jb.170.7.2954-2960.1988.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Dauwalder, O., D. Thomas, T. Ferry, A.L. Debard, C. Badiou, F. Vandenesch, J. Etienne, G. Lina, and G. Monneret. 2006. Comparative inflammatory properties of staphylococcal superantigenic enterotoxins SEA and SEG: Implications for septic shock. Journal of Leukocyte Biology 80 (4): 753–758. https://doi.org/10.1189/jlb.0306232.

    CAS  Article  PubMed  Google Scholar 

  27. Delemarre, T., G. Holtappels, N. De Ruyck, N. Zhang, H. Nauwynck, C. Bachert, and E. Gevaert. 2020. Type 2 inflammation in chronic rhinosinusitis without nasal polyps: Another relevant endotype. The Journal of Allergy and Clinical Immunology 146 (2): 337–343.e6. https://doi.org/10.1016/j.jaci.2020.04.040.

    CAS  Article  PubMed  Google Scholar 

  28. Deringer, J.R., R.J. Ely, S.R. Monday, C.V. Stauffacher, and G.A. Bohach. 1997. Vbeta-dependent stimulation of bovine and human T cells by host-specific staphylococcal enterotoxins. Infection and Immunity 65 (10): 4048–4054. https://doi.org/10.1128/iai.65.10.4048-4054.1997.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Dinges, M.M., P.M. Orwin, and P.M. Schlievert. 2000. Exotoxins of Staphylococcus aureus. Clinical Microbiology Reviews 13 (1): 16–34table of contents. https://doi.org/10.1128/cmr.13.1.16-34.2000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. Dobretsov, K., H. Negm, M. Ralli, and D. Passali. 2019. The theory of a "staphylococcus superantigen" in chronic rhinosinusitis with nasal polyps: Myth or reality? European Review for Medical and Pharmacological Sciences 23 (1 Suppl): 48–54. https://doi.org/10.26355/eurrev_201903_17349.

    CAS  Article  PubMed  Google Scholar 

  31. Edwards, L.A., C. O'Neill, M.A. Furman, S. Hicks, F. Torrente, M. Pérez-Machado, E.M. Wellington, A.D. Phillips, and S.H. Murch. 2012. Enterotoxin-producing staphylococci cause intestinal inflammation by a combination of direct epithelial cytopathy and superantigen-mediated T-cell activation. Inflammatory Bowel Diseases 18 (4): 624–640. https://doi.org/10.1002/ibd.21852.

    Article  PubMed  Google Scholar 

  32. Edwin, C., and E.H. Kass. 1989. Identification of functional antigenic segments of toxic shock syndrome toxin 1 by differential immunoreactivity and by differential mitogenic responses of human peripheral blood mononuclear cells, using active toxin fragments. Infection and Immunity 57 (7): 2230–2236. https://doi.org/10.1128/IAI.57.7.2230-2236.1989.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Fang, R.D., J.C. Cui, T.T. Cui, H.Y. Guo, H. Ono, C.H. Park, M. Okamura, A. Nakane, and D.L. Hu. 2019. Staphylococcal enterotoxin C is an important virulence factor for mastitis. Toxins 11 (3): 141. https://doi.org/10.3390/toxins11030141.

    CAS  Article  PubMed Central  Google Scholar 

  34. Ferry, T., D. Thomas, A.L. Genestier, M. Bes, G. Lina, F. Vandenesch, and J. Etienne. 2005. Comparative prevalence of superantigen genes in Staphylococcus aureus isolates causing sepsis with and without septic shock. Clinical Infectious Diseases 41 (6): 771–777. https://doi.org/10.1086/432798.

    CAS  Article  PubMed  Google Scholar 

  35. Fey, P.D., B. Saïd-Salim, M.E. Rupp, S.H. Hinrichs, D.J. Boxrud, C.C. Davis, B.N. Kreiswirth, and P.M. Schlievert. 2003. Comparative molecular analysis of community- or hospital-acquired methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 47 (1): 196–203. https://doi.org/10.1128/aac.47.1.196-203.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Fisher, E.L., M. Otto, and G.Y.C. Cheung. 2018. Basis of virulence in enterotoxin-mediated staphylococcal food poisoning. Frontiers in Microbiology 9: 436. https://doi.org/10.3389/fmicb.2018.00436.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Fitzgerald, J.R., S.R. Monday, T.J. Foster, G.A. Bohach, P.J. Hartigan, W.J. Meaney, and C.J. Smyth. 2001. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. Journal of Bacteriology 183 (1): 63–70. https://doi.org/10.1128/JB.183.1.63-70.2001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Fitzgerald, J.R., S.D. Reid, E. Ruotsalainen, T.J. Tripp, M.Y. Liu, R. Cole, P. Kuusela, P.M. Schlievert, A. Järvinen, and J.M. Musser. 2003. Genome diversification in Staphylococcus aureus: Molecular evolution of a highly variable chromosomal region encoding the staphylococcal exotoxin-like family of proteins. Infection and Immunity 71 (5): 2827–2838. https://doi.org/10.1128/iai.71.5.2827-2838.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Flora, M., F. Perrotta, A. Nicolai, R. Maffucci, A. Pratillo, M. Mollica, A. Bianco, and C. Calabrese. 2019. Staphylococcus aureus in chronic airway diseases: An overview. Respiratory Medicine 155: 66–71. https://doi.org/10.1016/j.rmed.2019.07.008.

    Article  PubMed  Google Scholar 

  40. Genigeorgis, C.A. 1989. Present state of knowledge on staphylococcal intoxication. International Journal of Food Microbiology 9 (4): 327–360. https://doi.org/10.1016/0168-1605(89)90100-1.

    CAS  Article  PubMed  Google Scholar 

  41. Gossack-Keenan, K.L., and A.J. Kam. 2020. Toxic shock syndrome: Still a timely diagnosis. Pediatric Emergency Care 36 (3): e163–e165. https://doi.org/10.1097/PEC.0000000000001310.

    Article  PubMed  Google Scholar 

  42. Graille, M., E.A. Stura, A.L. Corper, B.J. Sutton, M.J. Taussig, J.B. Charbonnier, and G.J. Silverman. 2000. Crystal structure of a Staphylococcus aureus protein a domain complexed with the fab fragment of a human IgM antibody: Structural basis for recognition of B-cell receptors and superantigen activity. Proceedings of the National Academy of Sciences of the United States of America 97 (10): 5399–5404. https://doi.org/10.1073/pnas.97.10.5399.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Günther, S., A.K. Varma, B. Moza, K.J. Kasper, A.W. Wyatt, P. Zhu, A.K.M.N.U. Rahman, Y.L. Li, R.A. Mariuzza, J.K. McCormick, et al. 2007. A novel loop domain in superantigens extends their T cell receptor recognition site. Journal of Molecular Biology 371 (1): 210–221. https://doi.org/10.1016/j.jmb.2007.05.038.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Guss, B., M. Uhlén, B. Nilsson, M. Lindberg, J. Sjöquist, and J. Sjödahl. 1984. Region X, the cell-wall-attachment part of staphylococcal protein a. European Journal of Biochemistry 138 (2): 413–420. https://doi.org/10.1111/j.1432-1033.1984.tb07931.x.

    CAS  Article  PubMed  Google Scholar 

  45. Hall, M., L. Hoyt, P. Ferrieri, P.M. Schlievert, and H.B. Jenson. 1999. Kawasaki syndrome-like illness associated with infection caused by enterotoxin B-secreting Staphylococcus aureus. Clinical Infectious Diseases 29 (3): 586–589. https://doi.org/10.1086/598638.

    CAS  Article  PubMed  Google Scholar 

  46. Hata, E.J., K. Katsuda, H. Kobayashi, T. Ogawa, T. Endô, and M. Eguchi. 2006. Characteristics and epidemiologic genotyping of Staphylococcus aureus isolates from bovine mastitic milk in Hokkaido, Japan. Journal of Veterinary Medical Science 68 (2): 165–170. https://doi.org/10.1292/jvms.68.165.

    CAS  Article  Google Scholar 

  47. Hata, E.J., K. Katsuda, H. Kobayashi, I. Uchida, K. Tanaka, and M. Eguchi. 2010. Genetic variation among Staphylococcus aureus strains from bovine milk and their relevance to methicillin-resistant isolates from humans. Journal of Clinical Microbiology 48 (6): 2130–2139. https://doi.org/10.1128/JCM.01940-09.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Haveri, M., A. Roslöf, L. Rantala, and S. Pyörälä. 2007. Virulence genes of bovine Staphylococcus aureus from persistent and nonpersistent intramammary infections with different clinical characteristics. Journal of Applied Microbiology 103 (4): 993–1000. https://doi.org/10.1111/j.1365-2672.2007.03356.x.

    CAS  Article  PubMed  Google Scholar 

  49. Haveri, M., S. Taponen, J. Vuopio-Varkila, S. Salmenlinna, and S. Pyörälä. 2005. Bacterial genotype affects the manifestation and persistence of bovine Staphylococcus aureus intramammary infection. Journal of Clinical Microbiology 43 (2): 959–961. https://doi.org/10.1128/jcm.43.2.959-961.2005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Hazariwala, A., Q. Sanders, C.R. Hudson, C. Hofacre, S.G. Thayer, and J.J. Maurer. 2002. Distribution of staphylococcal enterotoxin genes among Staphylococcus aureus isolates from poultry and humans with invasive staphylococcal disease. Avian Diseases 46 (1): 132–136. https://doi.org/10.1637/0005-2086(2002)046[0132:Dosega]2.0.co;2.

    Article  PubMed  Google Scholar 

  51. Hirose, S., H.K. Ono, K. Omoe, D.L. Hu, K. Asano, Y. Yamamoto, and A. Nakane. 2016. Goblet cells are involved in translocation of staphylococcal enterotoxin A in the intestinal tissue of house musk shrew (Suncus murinus). Journal of Applied Microbiology 120 (3): 781–789. https://doi.org/10.1111/jam.13029.

    CAS  Article  PubMed  Google Scholar 

  52. Hoekstra, J., A.L. Zomer, V.P.M.G. Rutten, L. Benedictus, A. Stegeman, M.P. Spaninks, T.W. Bennedsgaard, A. Biggs, S. De Vliegher, D.H. Mateo, et al. 2020. Genomic analysis of European bovine Staphylococcus aureus from clinical versus subclinical mastitis. Scientific Reports 10 (1): 18172. https://doi.org/10.1038/s41598-020-75179-2.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. Hovde, C.J., J.C. Marr, M.L. Hoffmann, S.P. Hackett, Y.I. Chi, K.K. Crum, D.L. Stevens, C.V. Stauffacher, and G.A. Bohach. 1994. Investigation of the role of the disulphide bond in the activity and structure of staphylococcal enterotoxin C1. Molecular Microbiology 13 (5): 897–909. https://doi.org/10.1111/j.1365-2958.1994.tb00481.x.

    CAS  Article  PubMed  Google Scholar 

  54. Hu, D.L., J.C. Cui, K. Omoe, H. Sashinami, Y. Yokomizo, K. Shinagawa, and A. Nakane. 2005a. A mutant of staphylococcal enterotoxin C devoid of bacterial superantigenic activity elicits a Th2 immune response for protection against Staphylococcus aureus infection. Infection and Immunity 73 (1): 174–180. https://doi.org/10.1128/IAI.73.1.174-180.2005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Hu, D.L., A. Imai, K. Ono, S. Sasaki, A. Nakane, S. Sugii, and K. Shinagawa. 1998. Epitope analysis of staphylococcal enterotoxin A using different synthetic peptides. The Journal of Veterinary Medical Science 60 (9): 993–996. https://doi.org/10.1292/jvms.60.993.

    CAS  Article  PubMed  Google Scholar 

  56. Hu, D.L., E.K. Maina, K. Omoe, F. Inoue, M. Yasujima, and A. Nakane. 2011. Superantigenic toxin genes coexist with specific staphylococcal cassette chromosome mec genes in methicillin-resistant Staphylococcus aureus. The Tohoku Journal of Experimental Medicine 225 (3): 161–169. https://doi.org/10.1620/tjem.225.161.

    CAS  Article  PubMed  Google Scholar 

  57. Hu, D.L., and A. Nakane. 2014. Mechanisms of staphylococcal enterotoxin-induced Emesis. European Journal of Pharmacology 722: 95–107. https://doi.org/10.1016/j.ejphar.2013.08.050.

    CAS  Article  PubMed  Google Scholar 

  58. Hu, D.L., K. Omoe, F. Inoue, T. Kasai, M. Yasujima, K. Shinagawa, and A. Nakane. 2008. Comparative prevalence of superantigenic toxin genes in meticillin-resistant and meticillin-susceptible Staphylococcus aureus isolates. Journal of Medical Microbiology 57 (pt 9): 1106–1112. https://doi.org/10.1099/jmm.0.2008/002790-0.

    Article  PubMed  Google Scholar 

  59. Hu, D.L., K. Omoe, S. Sasaki, H. Sashinami, H. Sakuraba, Y. Yokomizo, K. Shinagawa, and A. Nakane. 2003a. Vaccination with nontoxic mutant toxic shock syndrome toxin 1 protects against Staphylococcus aureus infection. The Journal of Infectious Diseases 188 (5): 743–752. https://doi.org/10.1086/377308.

    CAS  Article  PubMed  Google Scholar 

  60. Hu, D.L., K. Omoe, Y. Shimoda, A. Nakane, and K. Shinagawa. 2003b. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew (Suncus murinus). Infection and Immunity 71 (1): 567–570. https://doi.org/10.1128/iai.71.1.567-570.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Hu, D.L., K. Omoe, H. Shimura, K. Ono, S. Sugii, and K. Shinagawa. 1999. Emesis in the shrew mouse (Suncus murinus) induced by peroral and intraperitoneal administration of staphylococcal enterotoxin A. Journal of Food Protection 62 (11): 1350–1353. https://doi.org/10.4315/0362-028x-62.11.1350.

    CAS  Article  PubMed  Google Scholar 

  62. Hu, D.L., H.K. Ono, S. Isayama, R. Okada, M. Okamura, L.C. Lei, Z.S. Liu, X.C. Zhang, M.Y. Liu, J.C. Cui, et al. 2017. Biological characteristics of staphylococcal enterotoxin Q and its potential risk for food poisoning. Journal of Applied Microbiology 122 (6): 1672–1679. https://doi.org/10.1111/jam.13462.

    CAS  Article  PubMed  Google Scholar 

  63. Hu, D.L., S. Suga, K. Omoe, Y. Abe, K. Shinagawa, M. Wakui, and A. Nakane. 2005b. Staphylococcal enterotoxin A modulates intracellular Ca2+ signal pathway in human intestinal epithelial cells. FEBS Letters 579 (20): 4407–4412. https://doi.org/10.1016/j.febslet.2005.07.005.

    CAS  Article  PubMed  Google Scholar 

  64. Hu, D.L., L.Z. Wang, R.D. Fang, M. Okamura, and H.K. Ono. 2018. Staphylococcus aureus enterotoxins. Staphylococcus aureus, 39–55. Amsterdam: Elsevier. https://doi.org/10.1016/b978-0-12-809671-0.00003-6.

    Book  Google Scholar 

  65. Hu, D.L., G. Zhu, F. Mori, K. Omoe, M. Okada, K. Wakabayashi, S. Kaneko, K. Shinagawa, and A. Nakane. 2007. Staphylococcal enterotoxin induces emesis through increasing serotonin release in intestine and it is downregulated by cannabinoid receptor 1. Cellular Microbiology 9 (9): 2267–2277. https://doi.org/10.1111/j.1462-5822.2007.00957.x.

    CAS  Article  PubMed  Google Scholar 

  66. Huang, C., H. Yu, Q. Wang, W. Ma, D. Xia, P. Yi, L. Zhang, and X. Cao. 2004. Potent antitumor effect elicited by superantigen-linked tumor cells transduced with heat shock protein 70 gene. Cancer Science 95 (2): 160–167. https://doi.org/10.1111/j.1349-7006.2004.tb03198.x.

    CAS  Article  PubMed  Google Scholar 

  67. Jardetzky, T.S., J.H. Brown, J.C. Gorga, L.J. Stern, R.G. Urban, Y.I. Chi, C. Stauffacher, J.L. Strominger, and D.C. Wiley. 1994. Three-dimensional structure of a human class II histocompatibility molecule complexed with superantigen. Nature 368 (6473): 711–718. https://doi.org/10.1038/368711a0.

    CAS  Article  PubMed  Google Scholar 

  68. Jiang, K.F., S. Guo, J. Yang, J.F. Liu, A. Shaukat, G. Zhao, H.C. Wu, and G.Z. Deng. 2019. Matrine alleviates Staphylococcus aureus lipoteichoic acid-induced endometritis via suppression of TLR2-mediated NF-κB activation. International Immunopharmacology 70: 201–207. https://doi.org/10.1016/j.intimp.2019.02.033.

    CAS  Article  PubMed  Google Scholar 

  69. Jupin, C., S. Anderson, C. Damais, J.E. Alouf, and M. Parant. 1988. Toxic shock syndrome toxin 1 as an inducer of human tumor necrosis factors and gamma interferon. The Journal of Experimental Medicine 167 (3): 752–761. https://doi.org/10.1084/jem.167.3.752.

    CAS  Article  PubMed  Google Scholar 

  70. Kappler, J., B. Kotzin, L. Herron, E.W. Gelfand, R.D. Bigler, A. Boylston, S. Carrel, D.N. Posnett, Y. Choi, and P. Marrack. 1989. V beta-specific stimulation of human T cells by staphylococcal toxins. Science 244 (4906): 811–813. https://doi.org/10.1126/science.2524876.

    CAS  Article  PubMed  Google Scholar 

  71. Kato, M., Y. Nakamura, T. Suda, Y. Ozawa, N. Inui, N. Seo, T. Nagata, Y. Koide, P. Kalinski, H. Nakamura, et al. 2011. Enhanced anti-tumor immunity by superantigen-pulsed dendritic cells. Cancer Immunology, Immunotherapy 60 (7): 1029–1038. https://doi.org/10.1007/s00262-011-1015-5.

    Article  PubMed  Google Scholar 

  72. Katsuda, K., E.J. Hata, H. Kobayashi, M. Kohmoto, K. Kawashima, H. Tsunemitsu, and M. Eguchi. 2005. Molecular typing of Staphylococcus aureus isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Veterinary Microbiology 105 (3/4): 301–305. https://doi.org/10.1016/j.vetmic.2004.12.004.

    CAS  Article  PubMed  Google Scholar 

  73. Kawakami, Y., Y. Tomimori, K. Yumoto, S. Hasegawa, T. Ando, Y. Tagaya, S. Crotty, and T. Kawakami. 2009. Inhibition of NK cell activity by IL-17 allows vaccinia virus to induce severe skin lesions in a mouse model of eczema vaccinatum. The Journal of Experimental Medicine 206 (6): 1219–1225. https://doi.org/10.1084/jem.20082835.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Keener, A.B., L.T. Thurlow, S. Kang, N.A. Spidale, S.H. Clarke, K.M. Cunnion, R. Tisch, A.R. Richardson, and B.J. Vilen. 2017. Staphylococcus aureus protein a disrupts immunity mediated by long-lived plasma cells. Journal of Immunology 198 (3): 1263–1273. https://doi.org/10.4049/jimmunol.1600093.

    CAS  Article  Google Scholar 

  75. Kérouanton, A., J.A. Hennekinne, C. Letertre, L. Petit, O. Chesneau, A. Brisabois, and M.L. de Buyser. 2007. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. International Journal of Food Microbiology 115 (3): 369–375. https://doi.org/10.1016/j.ijfoodmicro.2006.10.050.

    CAS  Article  PubMed  Google Scholar 

  76. Kim, H.K., V. Thammavongsa, O. Schneewind, and D. Missiakas. 2012. Recurrent infections and immune evasion strategies of Staphylococcus aureus. Current Opinion in Microbiology 15 (1): 92–99. https://doi.org/10.1016/j.mib.2011.10.012.

    CAS  Article  PubMed  Google Scholar 

  77. Kim, J., B.E. Kim, K. Ahn, and D.Y.M. Leung. 2019. Interactions between atopic dermatitis and Staphylococcus aureus infection: Clinical implications. Allergy, Asthma & Immunology Research 11 (5): 593–603. https://doi.org/10.4168/aair.2019.11.5.593.

    CAS  Article  Google Scholar 

  78. Kirk, M., L. Ford, K. Glass, and G. Hall. 2014. Foodborne illness, Australia, circa 2000 and circa 2010. Emerging Infectious Diseases 20 (11): 1857–1864. https://doi.org/10.3201/eid2011.131315.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Kitamoto, M., K. Kito, Y. Niimi, S. Shoda, A. Takamura, T. Hiramatsu, T. Akashi, Y. Yokoi, H. Hirano, M. Hosokawa, et al. 2009. Food poisoning by Staphylococcus aureus at a university festival. Japanese Journal of Infectious Diseases 62 (3): 242–243.

    PubMed  Google Scholar 

  80. Kozono, H., D. Parker, J. White, P. Marrack, and J. Kappler. 1995. Multiple binding sites for bacterial superantigens on soluble class II MHC molecules. Immunity 3 (2): 187–196. https://doi.org/10.1016/1074-7613(95)90088-8.

    CAS  Article  PubMed  Google Scholar 

  81. Krakauer, T. 2019. Staphylococcal superantigens: Pyrogenic toxins induce toxic shock. Toxins 11 (3): 178. https://doi.org/10.3390/toxins11030178.

    CAS  Article  PubMed Central  Google Scholar 

  82. Lee, P.K., G.M. Vercellotti, J.R. Deringer, and P.M. Schlievert. 1991. Effects of staphylococcal toxic shock syndrome toxin 1 on aortic endothelial cells. The Journal of Infectious Diseases 164 (4): 711–719. https://doi.org/10.1093/infdis/164.4.711.

    CAS  Article  PubMed  Google Scholar 

  83. Letertre, C., S. Perelle, F. Dilasser, and P. Fach. 2003. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. Journal of Applied Microbiology 95 (1): 38–43. https://doi.org/10.1046/j.1365-2672.2003.01957.x.

    CAS  Article  PubMed  Google Scholar 

  84. Leuenberger, A., C. Sartori, R. Boss, G. Resch, F. Oechslin, A. Steiner, P. Moreillon, and H.U. Graber. 2019. Genotypes of Staphylococcus aureus: On-farm epidemiology and the consequences for prevention of intramammary infections. Journal of Dairy Science 102 (4): 3295–3309. https://doi.org/10.3168/jds.2018-15181.

    CAS  Article  PubMed  Google Scholar 

  85. Leung, D.Y., M. Gately, A. Trumble, B. Ferguson-Darnell, P.M. Schlievert, and L.J. Picker. 1995. Bacterial superantigens induce T cell expression of the skin-selective homing receptor, the cutaneous lymphocyte-associated antigen, via stimulation of interleukin 12 production. The Journal of Experimental Medicine 181 (2): 747–753. https://doi.org/10.1084/jem.181.2.747.

    CAS  Article  PubMed  Google Scholar 

  86. Li, S.J., D.L. Hu, E.K. Maina, K. Shinagawa, K. Omoe, and A. Nakane. 2011. Superantigenic activity of toxic shock syndrome toxin-1 is resistant to heating and digestive enzymes. Journal of Applied Microbiology 110 (3): 729–736. https://doi.org/10.1111/j.1365-2672.2010.04927.x.

    CAS  Article  PubMed  Google Scholar 

  87. Li, T.M., H.Y. Lu, X. Wang, Q.Q. Gao, Y.X. Dai, J. Shang, and M. Li. 2017. Molecular characteristics of Staphylococcus aureus causing bovine mastitis between 2014 and 2015. Frontiers in Cellular and Infection Microbiology 7: 127. https://doi.org/10.3389/fcimb.2017.00127.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  88. Lin, Y.T., C.T. Wang, P.S. Chao, J.H. Lee, L.C. Wang, H.H. Yu, Y.H. Yang, and B.L. Chiang. 2011. Skin-homing CD4+ Foxp3+ T cells exert Th2-like function after staphylococcal superantigen stimulation in atopic dermatitis patients. Clinical and Experimental Allergy 41 (4): 516–525. https://doi.org/10.1111/j.1365-2222.2010.03681.x.

    CAS  Article  PubMed  Google Scholar 

  89. Lina, G., G.A. Bohach, S.P. Nair, K. Hiramatsu, E. Jouvin-Marche, and R. Mariuzza. 2004. Standard nomenclature for the superantigens expressed by Staphylococcus. The Journal of Infectious Diseases 189 (12): 2334–2336. https://doi.org/10.1086/420852.

    Article  PubMed  Google Scholar 

  90. Lindsay, J.A., A. Ruzin, H.F. Ross, N. Kurepina, and R.P. Novick. 1998. The gene for toxic shock toxin is carried by a family of mobile pathogenicity islands in Staphylococcus aureus. Molecular Microbiology 29 (2): 527–543. https://doi.org/10.1046/j.1365-2958.1998.00947.x.

    CAS  Article  PubMed  Google Scholar 

  91. Ma, W.X., H. Yu, Q.Q. Wang, H.C. Jin, J. Solheim, and V. Labhasetwar. 2004. A novel approach for cancer immunotherapy: Tumor cells with anchored superantigen SEA generate effective antitumor immunity. Journal of Clinical Immunology 24 (3): 294–301. https://doi.org/10.1023/B:JOCI.0000025451.41948.94.

    CAS  Article  PubMed  Google Scholar 

  92. Maina, E.K., D.L. Hu, T. Tsuji, K. Omoe, and A. Nakane. 2012. Staphylococcal enterotoxin A has potent superantigenic and emetic activities but not diarrheagenic activity. International Journal of Medical Microbiology 302 (2): 88–95. https://doi.org/10.1016/j.ijmm.2012.01.003.

    CAS  Article  PubMed  Google Scholar 

  93. Marrack, P., and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science 248 (4956): 705–711. https://doi.org/10.1126/science.2185544.

    CAS  Article  PubMed  Google Scholar 

  94. Martin, M.C., J.M. Fueyo, M.A. González-Hevia, and M.C. Mendoza. 2004. Genetic procedures for identification of enterotoxigenic strains of Staphylococcus aureus from three food poisoning outbreaks. International Journal of Food Microbiology 94 (3): 279–286. https://doi.org/10.1016/j.ijfoodmicro.2004.01.011.

    CAS  Article  PubMed  Google Scholar 

  95. Matsubara, K., and T. Fukaya. 2007. The role of superantigens of group a Streptococcus and Staphylococcus aureus in Kawasaki disease. Current Opinion in Infectious Diseases 20 (3): 298–303. https://doi.org/10.1097/QCO.0b013e3280964d8c.

    Article  PubMed  Google Scholar 

  96. Mattis, D.M., A.R. Spaulding, O.N. Chuang-Smith, E.J. Sundberg, P.M. Schlievert, and D.M. Kranz. 2013. Engineering a soluble high-affinity receptor domain that neutralizes staphylococcal enterotoxin C in rabbit models of disease. Protein Engineering, Design & Selection 26 (2): 133–142. https://doi.org/10.1093/protein/gzs094.

    CAS  Article  Google Scholar 

  97. McCormick, J.K., J.M. Yarwood, and P.M. Schlievert. 2001. Toxic shock syndrome and bacterial superantigens: An update. Annual Review of Microbiology 55: 77–104. https://doi.org/10.1146/annurev.micro.55.1.77.

    CAS  Article  PubMed  Google Scholar 

  98. McKay, D.M., F. Botelho, P.J. Ceponis, and C.D. Richards. 2000. Superantigen immune stimulation activates epithelial STAT-1 and PI 3-K: PI 3-K regulation of permeability. American Journal of Physiology. Gastrointestinal and Liver Physiology 279 (5): G1094–G1103. https://doi.org/10.1152/ajpgi.2000.279.5.G1094.

    CAS  Article  PubMed  Google Scholar 

  99. McKay, D.M., and P.K. Singh. 1997. Superantigen activation of immune cells evokes epithelial (T84) transport and barrier abnormalities via IFN-gamma and TNF alpha: Inhibition of increased permeability, but not diminished secretory responses by TGF-beta2. Journal of Immunology 159 (5): 2382–2390.

    CAS  Google Scholar 

  100. Mead, P.S., L. Slutsker, V. Dietz, L.F. McCaig, J.S. Bresee, C. Shapiro, P.M. Griffin, and R.V. Tauxe. 1999. Food-related illness and death in the United States. Emerging Infectious Diseases 5 (5): 607–625. https://doi.org/10.3201/eid0505.990502.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  101. Miller, L.S., V.G. Fowler, S.K. Shukla, W.E. Rose, and R.A. Proctor. 2020. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiology Reviews 44 (1): 123–153. https://doi.org/10.1093/femsre/fuz030.

    CAS  Article  PubMed  Google Scholar 

  102. Mitra, S.D., D. Velu, M. Bhuvana, N. Krithiga, A. Banerjee, R. Shome, H. Rahman, S.K. Ghosh, and B.R. Shome. 2013. Staphylococcus aureus spa type t267, clonal ancestor of bovine subclinical mastitis in India. Journal of Applied Microbiology 114 (6): 1604–1615. https://doi.org/10.1111/jam.12186.

    CAS  Article  PubMed  Google Scholar 

  103. Miwa, K., M. Fukuyama, N. Matsuno, S. Masuda, Y. Oyama, K. Ikeda, and T. Ikeda. 2006. Superantigen-induced multiple organ dysfunction in a toxin-concentration-controlled and sequential parameter-monitored swine Sepsis model. International Journal of Infectious Diseases 10 (1): 14–24. https://doi.org/10.1016/j.ijid.2005.01.006.

    Article  PubMed  Google Scholar 

  104. Mojahed Asl, L., K. Saleki, and M. Nemati. 2019. Comparison of relation between resistance pattern to erythromycin and tetracycline and the prevalence of superantigens coding enterotoxins A and B in Staphylococcus aureus isolated from broiler poultry in Ilam, Iran. Archives of Razi Institute 74 (2): 157–164. https://doi.org/10.22092/ari.2018.116231.1161.

    CAS  Article  PubMed  Google Scholar 

  105. Monday, S.R., and G.A. Bohach. 2001. Genes encoding staphylococcal enterotoxins G and I are linked and separated by DNA related to other staphylococcal enterotoxins. Journal of Natural Toxins 10 (1): 1–8.

    CAS  PubMed  Google Scholar 

  106. Munson, S.H., M.T. Tremaine, M.J. Betley, and R.A. Welch. 1998. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infection and Immunity 66 (7): 3337–3348. https://doi.org/10.1128/iai.66.7.3337-3348.1998.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  107. Nagata, S. 2019. Causes of Kawasaki disease-from past to present. Frontiers in Pediatrics 7: 18. https://doi.org/10.3389/fped.2019.00018.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Narita, K., D.L. Hu, K. Asano, and A. Nakane. 2019. Interleukin-10 (IL-10) produced by mutant toxic shock syndrome toxin 1 vaccine-induced memory T cells downregulates IL-17 production and abrogates the protective effect against Staphylococcus aureus infection. Infection and Immunity 87 (10): e00494–e01987. https://doi.org/10.1128/iai.00494-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Nienaber, J.J.C., B.K. Sharma Kuinkel, M. Clarke-Pearson, S. Lamlertthon, L. Park, T.H. Rude, S. Barriere, C.W. Woods, V.H. Chu, M. Marín, et al. 2011. Methicillin-susceptible Staphylococcus aureus endocarditis isolates are associated with clonal complex 30 genotype and a distinct repertoire of enterotoxins and adhesins. The Journal of Infectious Diseases 204 (5): 704–713. https://doi.org/10.1093/infdis/jir389.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  110. Normann, S.J., R.F. Jaeger, and R.T. Johnsey. 1969. Pathology of experimental enterotoxemia. The in vivo localization of staphylococcal enterotoxin B. Laboratory Investigation 20 (1): 17–25.

    CAS  PubMed  Google Scholar 

  111. Normanno, G., A. Firinu, S. Virgilio, G. Mula, A. Dambrosio, A. Poggiu, L. Decastelli, R. Mioni, S. Scuota, G. Bolzoni, et al. 2005. Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. International Journal of Food Microbiology 98 (1): 73–79. https://doi.org/10.1016/j.ijfoodmicro.2004.05.008.

    CAS  Article  PubMed  Google Scholar 

  112. Novick, R.P., and A. Subedi. 2007. The SaPIs: Mobile pathogenicity islands of Staphylococcus. Chemical Immunology and Allergy 93: 42–57. https://doi.org/10.1159/000100857.

    CAS  Article  PubMed  Google Scholar 

  113. Omoe, K., D.L. Hu, H.K. Ono, S. Shimizu, H. Takahashi-Omoe, A. Nakane, T. Uchiyama, K. Shinagawa, and K. Imanishi. 2013. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infection and Immunity 81 (10): 3627–3631. https://doi.org/10.1128/iai.00550-13.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Omoe, K., D.L. Hu, H. Takahashi-Omoe, A. Nakane, and K. Shinagawa. 2003. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infection and Immunity 71 (10): 6088–6094. https://doi.org/10.1128/iai.71.10.6088-6094.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  115. Omoe, K., D.L. Hu, H. Takahashi-Omoe, A. Nakane, and K. Shinagawa. 2005a. Comprehensive analysis of classical and newly described staphylococcal superantigenic toxin genes in Staphylococcus aureus isolates. FEMS Microbiol. Lett. 246 (2): 191–198. https://doi.org/10.1016/j.femsle.2005.04.007.

    CAS  Article  Google Scholar 

  116. Omoe, K., K. Imanishi, D.L. Hu, H. Kato, Y. Fugane, Y. Abe, S. Hamaoka, Y. Watanabe, A. Nakane, T. Uchiyama, et al. 2005b. Characterization of novel staphylococcal enterotoxin-like toxin type P. Infection and Immunity 73 (9): 5540–5546. https://doi.org/10.1128/IAI.73.9.5540-5546.2005.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Ono, H.K., S. Hirose, I. Naito, Y. Sato'O, K. Asano, D.L. Hu, K. Omoe, and A. Nakane. 2017. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiology and Immunology 61 (1): 12–16. https://doi.org/10.1111/1348-0421.12460.

    CAS  Article  PubMed  Google Scholar 

  118. Ono, H.K., S. Hirose, K. Narita, M. Sugiyama, K. Asano, D.L. Hu, and A. Nakane. 2019. Histamine release from intestinal mast cells induced by staphylococcal enterotoxin A (SEA) evokes vomiting reflex in common marmoset. PLoS Pathogens 15 (5): e1007803. https://doi.org/10.1371/journal.ppat.1007803.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Ono, H.K., M. Nishizawa, Y. Yamamoto, D.L. Hu, A. Nakane, K. Shinagawa, and K. Omoe. 2012. Submucosal mast cells in the gastrointestinal tract are a target of staphylococcal enterotoxin type A. FEMS Immunology and Medical Microbiology 64 (3): 392–402. https://doi.org/10.1111/j.1574-695X.2011.00924.x.

    CAS  Article  PubMed  Google Scholar 

  120. Ono, H.K., K. Omoe, K. Imanishi, Y. Iwakabe, D.L. Hu, H. Kato, N. Saito, A. Nakane, T. Uchiyama, and K. Shinagawa. 2008. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infection and Immunity 76 (11): 4999–5005. https://doi.org/10.1128/IAI.00045-08.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  121. Ono, H.K., Y. Sato'O, K. Narita, I. Naito, S. Hirose, J. Hisatsune, K. Asano, D.L. Hu, K. Omoe, M. Sugai, et al. 2015. Identification and characterization of a novel staphylococcal emetic toxin. Applied and Environmental Microbiology 81 (20): 7034–7040. https://doi.org/10.1128/AEM.01873-15.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  122. Orwin, P.M., J.R. Fitzgerald, D.Y. Leung, J.A. Gutierrez, G.A. Bohach, and P.M. Schlievert. 2003. Characterization of Staphylococcus aureus enterotoxin L. Infection and Immunity 71 (5): 2916–2919. https://doi.org/10.1128/iai.71.5.2916-2919.2003.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  123. Orwin, P.M., D.Y. Leung, H.L. Donahue, R.P. Novick, and P.M. Schlievert. 2001. Biochemical and biological properties of staphylococcal enterotoxin K. Infection and Immunity 69 (1): 360–366. https://doi.org/10.1128/iai.69.1.360-366.2001.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  124. Orwin, P.M., D.Y.M. Leung, T.J. Tripp, G.A. Bohach, C.A. Earhart, D.H. Ohlendorf, and P.M. Schlievert. 2002. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry 41 (47): 14033–14040. https://doi.org/10.1021/bi025977q.

    CAS  Article  PubMed  Google Scholar 

  125. Ote, I., B. Taminiau, J.N. Duprez, I. Dizier, and J.G. Mainil. 2011. Genotypic characterization by polymerase chain reaction of Staphylococcus aureus isolates associated with bovine mastitis. Veterinary Microbiology 153 (3/4): 285–292. https://doi.org/10.1016/j.vetmic.2011.05.042.

    CAS  Article  PubMed  Google Scholar 

  126. Pauli, N.T., H.K. Kim, F. Falugi, M. Huang, J. Dulac, C. Henry Dunand, N.Y. Zheng, K. Kaur, S.F. Andrews, Y.P. Huang, et al. 2014. Staphylococcus aureus infection induces protein A-mediated immune evasion in humans. The Journal of Experimental Medicine 211 (12): 2331–2339. https://doi.org/10.1084/jem.20141404.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Pesavento, G., B. Ducci, N. Comodo, and A.L. Nostro. 2007. Antimicrobial resistance profile of Staphylococcus aureus isolated from raw meat: A research for methicillin resistant Staphylococcus aureus (MRSA). Food Control 18 (3): 196–200. https://doi.org/10.1016/j.foodcont.2005.09.013.

    CAS  Article  Google Scholar 

  128. Petersson, K., M. Thunnissen, G. Forsberg, and B. Walse. 2002. Crystal structure of a SEA variant in complex with MHC class II reveals the ability of SEA to crosslink MHC molecules. Structure 10 (12): 1619–1626. https://doi.org/10.1016/S0969-2126(02)00895-X.

    CAS  Article  PubMed  Google Scholar 

  129. Piccinini, R., R. Tassi, V. Daprà, R. Pilla, J. Fenner, B. Carter, and M.F. Anjum. 2012. Study of Staphylococcus aureus collected at slaughter from dairy cows with chronic mastitis. The Journal of Dairy Research 79 (2): 249–255. https://doi.org/10.1017/S002202991200009X.

    CAS  Article  PubMed  Google Scholar 

  130. Poddighe, D., and L. Vangelista. 2020. Staphylococcus aureus infection and persistence in chronic rhinosinusitis: Focus on leukocidin ED. Toxins 12 (11): 678. https://doi.org/10.3390/toxins12110678.

    CAS  Article  PubMed Central  Google Scholar 

  131. Pragman, A.A., J.M. Yarwood, T.J. Tripp, and P.M. Schlievert. 2004. Characterization of virulence factor regulation by SrrAB, a two-component system in Staphylococcus aureus. Journal of Bacteriology 186 (8): 2430–2438. https://doi.org/10.1128/jb.186.8.2430-2438.2004.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Reiser, R.F., R.N. Robbins, G.P. Khoe, and M.S. Bergdoll. 1983. Purification and some physicochemical properties of toxic-shock toxin. Biochemistry 22 (16): 3907–3912. https://doi.org/10.1021/bi00285a028.

    CAS  Article  PubMed  Google Scholar 

  133. Ren, Q., G.H. Liao, Z.H. Wu, J. Lv, and W. Chen. 2020. Prevalence and characterization of Staphylococcus aureus isolates from subclinical bovine mastitis in southern Xinjiang, China. Journal of Dairy Science 103 (4): 3368–3380. https://doi.org/10.3168/jds.2019-17420.

    CAS  Article  PubMed  Google Scholar 

  134. Ronco, T., I.C. Klaas, M. Stegger, L. Svennesen, L.B. Astrup, M. Farre, and K. Pedersen. 2018. Genomic investigation of Staphylococcus aureus isolates from bulk tank milk and dairy cows with clinical mastitis. Veterinary Microbiology 215: 35–42. https://doi.org/10.1016/j.vetmic.2018.01.003.

    CAS  Article  PubMed  Google Scholar 

  135. Rosenau, M.J., and G.W. Mccoy. 1931. An outbreak of food poisoning proved to be due to a yellow haemolytic Staphylococcus. Journal of Preventive Medicine 4: 167–175. https://doi.org/10.1097/00000441-193103000-00058.

    Article  Google Scholar 

  136. Saline, M., K.E.J. Rödström, G. Fischer, V.Y. Orekhov, B. Göran Karlsson, and K. Lindkvist-Petersson. 2010. The structure of superantigen complexed with TCR and MHC reveals novel insights into superantigenic T cell activation. Nature Communications 1: 119. https://doi.org/10.1038/ncomms1117.

    CAS  Article  PubMed  Google Scholar 

  137. Sato'O, Y., K. Omoe, I. Naito, H.K. Ono, A. Nakane, M. Sugai, N. Yamagishi, and D.L. Hu. 2014. Molecular epidemiology and identification of a Staphylococcus aureus clone causing food poisoning outbreaks in Japan. Journal of Clinical Microbiology 52 (7): 2637–2640. https://doi.org/10.1128/JCM.00661-14.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Sato'O, Y., K. Omoe, H.K. Ono, A. Nakane, and D.L. Hu. 2013. A novel comprehensive analysis method for Staphylococcus aureus pathogenicity islands. Microbiology and Immunology 57 (2): 91–99. https://doi.org/10.1111/1348-0421.12007.

    CAS  Article  PubMed  Google Scholar 

  139. Schlievert, P.M., M.P. Cahill, B.S. Hostager, A.J. Brosnahan, A.J. Klingelhutz, F.A. Gourronc, G.A. Bishop, and D.Y.M. Leung. 2019. Staphylococcal superantigens stimulate epithelial cells through CD40 to produce chemokines. mBio 10 (2): e00214–e00219. https://doi.org/10.1128/mbio.00214-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Schlievert, P.M., L.C. Case, K.A. Nemeth, C.C. Davis, Y.P. Sun, W. Qin, F.C. Wang, A.J. Brosnahan, J.A. Mleziva, M.L. Peterson, et al. 2007. Α and β chains of hemoglobin inhibit production of Staphylococcus aureus exotoxins. Biochemistry 46 (50): 14349–14358. https://doi.org/10.1021/bi701202w.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Schlievert, P.M., L.C. Case, K.L. Strandberg, B.B. Abrams, and D.Y.M. Leung. 2008. Superantigen profile of Staphylococcus aureus isolates from patients with steroid-resistant atopic dermatitis. Clinical Infectious Diseases 46 (10): 1562–1567. https://doi.org/10.1086/586746.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Schlievert, P.M., L.M. Jablonski, M. Roggiani, I. Sadler, S. Callantine, D.T. Mitchell, D.H. Ohlendorf, and G.A. Bohach. 2000. Pyrogenic toxin superantigen site specificity in toxic shock syndrome and food poisoning in animals. Infection and Immunity 68 (6): 3630–3634. https://doi.org/10.1128/iai.68.6.3630-3634.2000.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  143. Schlievert, P.M., and M.H. Kim. 1991. Reporting of toxic shock syndrome Staphylococcus aureus in 1982 to 1990. The Journal of Infectious Diseases 164 (6): 1245–1246. https://doi.org/10.1093/infdis/164.6.1245.

    CAS  Article  PubMed  Google Scholar 

  144. Schlievert, P.M., K.N. Shands, B.B. Dan, G.P. Schmid, and R.D. Nishimura. 1981. Identification and characterization of an exotoxin from Staphylococcus aureus associated with toxic-shock syndrome. The Journal of Infectious Diseases 143 (4): 509–516. https://doi.org/10.1093/infdis/143.4.509.

    CAS  Article  PubMed  Google Scholar 

  145. Schlievert, P.M., K.L. Strandberg, Y.C. Lin, M.L. Peterson, and D.Y.M. Leung. 2010. Secreted virulence factor comparison between methicillin-resistant and methicillin-sensitive Staphylococcus aureus, and its relevance to atopic dermatitis. The Journal of Allergy and Clinical Immunology 125 (1): 39–49. https://doi.org/10.1016/j.jaci.2009.10.039.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  146. Schlievert, P.M., T.J. Tripp, and M.L. Peterson. 2004. Reemergence of staphylococcal toxic shock syndrome in Minneapolis-St. Paul, Minnesota, during the 2000-2003 surveillance period. Journal of Clinical Microbiology 42 (6): 2875–2876. https://doi.org/10.1128/JCM.42.6.2875-2876.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Seiti Yamada Yoshikawa, F., J. Feitosa de Lima, M. Notomi Sato, Y. Álefe Leuzzi Ramos, V. Aoki, and R. Leao Orfali. 2019. Exploring the role of Staphylococcus aureus toxins in atopic dermatitis. Toxins 11 (6): 321. https://doi.org/10.3390/toxins11060321.

    CAS  Article  PubMed Central  Google Scholar 

  148. Shimizu, M., A. Matsuzawa, and Y. Takeda. 2003. A novel method for modification of tumor cells with bacterial superantigen with a heterobifunctional cross-linking agent in immunotherapy of cancer. Molecular Biotechnology 25 (1): 89–94. https://doi.org/10.1385/MB:25:1:89.

    CAS  Article  PubMed  Google Scholar 

  149. Shopsin, B., M. Gomez, S.O. Montgomery, D.H. Smith, M. Waddington, D.E. Dodge, D.A. Bost, M. Riehman, S. Naidich, and B.N. Kreiswirth. 1999. Evaluation of protein a gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. Journal of Clinical Microbiology 37 (11): 3556–3563. https://doi.org/10.1128/jcm.37.11.3556-3563.1999.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Silverman, G.J., and C.S. Goodyear. 2006. Confounding B-cell defences: Lessons from a staphylococcal superantigen. Nature Reviews. Immunology 6 (6): 465–475. https://doi.org/10.1038/nri1853.

    CAS  Article  PubMed  Google Scholar 

  151. Spaulding, A.R., W. Salgado-Pabón, P.L. Kohler, A.R. Horswill, D.Y. Leung, and P.M. Schlievert. 2013. Staphylococcal and streptococcal superantigen exotoxins. Clinical Microbiology Reviews 26 (3): 422–447. https://doi.org/10.1128/cmr.00104-12.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Stankovic, K., P. Miailhes, D. Bessis, T. Ferry, C. Broussolle, and P. Sève. 2007. Kawasaki-like syndromes in HIV-infected adults. The Journal of Infection 55 (6): 488–494. https://doi.org/10.1016/j.jinf.2007.09.005.

    CAS  Article  PubMed  Google Scholar 

  153. Stiles, J.W., and J.C. Denniston. 1971. Response of the rhesus monkey, Macaca mulatta, to continuously infused staphylococcal enterotoxin B. Laboratory Investigation; A Journal of Technical Methods and Pathology 25 (6): 617–625.

    CAS  PubMed  Google Scholar 

  154. Stow, N.W., M. Girard, Z. Vourexakis, A. Des Courtis, G. Renzi, E. Huggler, S. Vlaminck, P. Bonfils, et al. 2010. Screening for staphylococcal superantigen genes shows no correlation with the presence or the severity of chronic rhinosinusitis and nasal polyposis. PLoS One 5 (3): e9525. https://doi.org/10.1371/journal.pone.0009525.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Strandberg, K.L., J.H. Rotschafer, S.M. Vetter, R.A. Buonpane, D.M. Kranz, and P.M. Schlievert. 2010. Staphylococcal superantigens cause lethal pulmonary disease in rabbits. The Journal of Infectious Diseases 202 (11): 1690–1697. https://doi.org/10.1086/657156.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Su, Y.C., and A.C. Wong. 1995. Identification and purification of a new staphylococcal enterotoxin, H. Applied and Environmental Microbiology 61 (4): 1438–1443. https://doi.org/10.1128/aem.61.4.1438-1443.1995.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Suleiman, T.S., E.D. Karimuribo, and R.H. Mdegela. 2018. Prevalence of bovine subclinical mastitis and antibiotic susceptibility patterns of major mastitis pathogens isolated in Unguja island of Zanzibar, Tanzania. Tropical Animal Health and Production 50 (2): 259–266. https://doi.org/10.1007/s11250-017-1424-3.

    CAS  Article  PubMed  Google Scholar 

  158. Sun, Y., C. Emolo, S. Holtfreter, S. Wiles, B. Kreiswirth, D. Missiakas, and O. Schneewind. 2018. Staphylococcal protein a contributes to persistent colonization of mice with Staphylococcus aureus. Journal of Bacteriology 200 (9): e00735–e00717. https://doi.org/10.1128/jb.00735-17.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Suwarsa, O., S. Adi, P. Idjradinata, E. Sutedja, E. Avriyanti, A. Asfara, and H. Gunawan. 2017a. Interleukin-18 correlates with interleukin-4 but not interferon-γ production in lymphocyte cultures from atopic dermatitis patients after staphylococcal enterotoxin B stimulation. Asian Pacific Journal of Allergy and Immunology 35 (1): 54–59. https://doi.org/10.12932/AP0787.

    CAS  Article  PubMed  Google Scholar 

  160. Suwarsa, O., S. Adi, P. Idjradinata, E. Sutedja, E. Avriyanti, A. Asfara, and H. Gunawan. 2017b. Interleukin-18 correlates with interleukin-4 but not interferon-γ production in lymphocyte cultures from atopic dermatitis patients after staphylococcal enterotoxin B stimulation. Asian Pacific Journal of Allergy and Immunology 35 (1): 54–59. https://doi.org/10.12932/AP0787.

    CAS  Article  PubMed  Google Scholar 

  161. Suzuki, Y., H.K. Ono, Y. Shimojima, H. Kubota, R. Kato, T. Kakuda, S. Hirose, D.L. Hu, A. Nakane, S. Takai, et al. 2020. A novel staphylococcal enterotoxin SE02 involved in a staphylococcal food poisoning outbreak that occurred in Tokyo in 2004. Food Microbiology 92: 103588. https://doi.org/10.1016/j.fm.2020.103588.

    CAS  Article  PubMed  Google Scholar 

  162. Swaminathan, S., W. Furey, J. Pletcher, and M. Sax. 1992. Crystal structure of staphylococcal enterotoxin B, a superantigen. Nature 359 (6398): 801–806. https://doi.org/10.1038/359801a0.

    CAS  Article  PubMed  Google Scholar 

  163. Swaminathan, S., W. Furey, J. Pletcher, and M. Sax. 1995. Residues defining Vβ specificity in staphylococcal enterotoxins. Nature Structural Biology 2 (8): 680–686. https://doi.org/10.1038/nsb0895-680.

    CAS  Article  PubMed  Google Scholar 

  164. Szabo, P.A., A. Goswami, D.M. Mazzuca, K. Kim, D.B. O'Gorman, D.A. Hess, I.D. Welch, H.A. Young, B. Singh, J.K. McCormick, et al. 2017. Rapid and rigorous IL-17A production by a distinct subpopulation of effector memory T lymphocytes constitutes a novel mechanism of toxic shock syndrome immunopathology. Journal of Immunology 198 (7): 2805–2818. https://doi.org/10.4049/jimmunol.1601366.

    CAS  Article  Google Scholar 

  165. Tallent, S.M., T.B. Langston, R.G. Moran, and G.E. Christie. 2007. Transducing particles of Staphylococcus aureus pathogenicity island SaPI1 are comprised of helper phage-encoded proteins. Journal of Bacteriology 189 (20): 7520–7524. https://doi.org/10.1128/jb.00738-07.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Tauxe, R.V. 2002. Emerging foodborne pathogens. International Journal of Food Microbiology 78 (1/2): 31–41. https://doi.org/10.1016/s0168-1605(02)00232-5.

    CAS  Article  PubMed  Google Scholar 

  167. Terzolo, H.R., and A. Shimizu. 1979. Biological characters and bacteriophage typing of Staphylococcus aureus isolated from chicken staphylococcosis and commercial balanced chicken food in argentine. Revista Argentina de Microbiología 11 (3): 89–101.

    CAS  PubMed  Google Scholar 

  168. Thomas, D.Y., S. Jarraud, B. Lemercier, G. Cozon, K. Echasserieau, J. Etienne, M.L. Gougeon, G. Lina, and F. Vandenesch. 2006. Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infection and Immunity 74 (8): 4724–4734. https://doi.org/10.1128/IAI.00132-06.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Tiedemann, R.E., and J.D. Fraser. 1996. Cross-linking of MHC class II molecules by staphylococcal enterotoxin A is essential for antigen-presenting cell and T cell activation. Journal of Immunology 157 (9): 3958–3966.

    CAS  Google Scholar 

  170. Todd, J., M. Fishaut, F. Kapral, and T. Welch. 1978. Toxic-shock syndrome associated with phage-group-i staphylococci. Lancet 312 (8100): 1116–1118. https://doi.org/10.1016/S0140-6736(78)92274-2.

    Article  Google Scholar 

  171. Trede, N.S., R.S. Geha, and T. Chatila. 1991. Transcriptional activation of IL-1 beta and tumor necrosis factor-alpha genes by MHC class II ligands. Journal of Immunology 146 (7): 2310–2315.

    CAS  Google Scholar 

  172. van Crombruggen, K., N. Zhang, P. Gevaert, P. Tomassen, and C. Bachert. 2011. Pathogenesis of chronic rhinosinusitis: Inflammation. The Journal of Allergy and Clinical Immunology 128 (4): 728–732. https://doi.org/10.1016/j.jaci.2011.07.049.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. van Gessel, Y.A., S. Mani, S.G. Bi, R. Hammamieh, J.W. Shupp, R. Das, G.D. Coleman, and M. Jett. 2004. Functional piglet model for the clinical syndrome and postmortem findings induced by staphylococcal enterotoxin B. Experimental Biology and Medicine (Maywood, N.J.) 229 (10): 1061–1071. https://doi.org/10.1177/153537020422901011.

    Article  Google Scholar 

  174. Van Zele, T., P. Gevaert, J.B. Watelet, G. Claeys, G. Holtappels, C. Claeys, P. van Cauwenberge, and C. Bachert. 2004. Staphylococcus aureus colonization and IgE antibody formation to enterotoxins is increased in nasal polyposis. The Journal of Allergy and Clinical Immunology 114 (4): 981–983. https://doi.org/10.1016/j.jaci.2004.07.013.

    CAS  Article  PubMed  Google Scholar 

  175. Van Zele, T., M. Vaneechoutte, G. Holtappels, P. Gevaert, P. van Cauwenberge, and C. Bachert. 2008. Detection of enterotoxin DNA in Staphylococcus aureus strains obtained from the middle meatus in controls and nasal polyp patients. American Journal of Rhinology 22 (3): 223–227. https://doi.org/10.2500/ajr.2008.22.3161.

    Article  PubMed  Google Scholar 

  176. Veh, K.A., R.C. Klein, C. Ster, G. Keefe, P. Lacasse, D. Scholl, J.P. Roy, D. Haine, S. Dufour, B.G. Talbot, et al. 2015. Genotypic and phenotypic characterization of Staphylococcus aureus causing persistent and nonpersistent subclinical bovine intramammary infections during lactation or the dry period. Journal of Dairy Science 98 (1): 155–168. https://doi.org/10.3168/jds.2014-8044.

    CAS  Article  PubMed  Google Scholar 

  177. Veras, J.F., L.S. do Carmo, L.C. Tong, J.W. Shupp, C. Cummings, D.A. dos Santos, M.M.O.P. Cerqueira, A. Cantini, J.R. Nicoli, and M. Jett. 2008. A study of the enterotoxigenicity of coagulase-negative and coagulase-positive staphylococcal isolates from food poisoning outbreaks in Minas Gerais, Brazil. International Journal of Infectious Diseases 12 (4): 410–415. https://doi.org/10.1016/j.ijid.2007.09.018.

    CAS  Article  PubMed  Google Scholar 

  178. Wagner Mackenzie, B., J. Baker, R.G. Douglas, M.W. Taylor, and K. Biswas. 2019. Detection and quantification of Staphylococcus in rhinosinusitis. International Forum Allergy Rhinology 9 (12): 1462–1469. https://doi.org/10.1002/alr.22425.

    Article  Google Scholar 

  179. Wang, A., J.G. Gaca, and V.H. Chu. 2018. Management considerations in infective endocarditis: A review. JAMA 320 (1): 72–83. https://doi.org/10.1001/jama.2018.7596.

    Article  PubMed  Google Scholar 

  180. Wang, D., L.M. Zhang, C.F. Yong, M.L. Shen, T. Ali, M. Shahid, K. Han, X.Z. Zhou, and B. Han. 2017. Relationships among superantigen toxin gene profiles, genotypes, and pathogenic characteristics of Staphylococcus aureus isolates from bovine mastitis. Journal of Dairy Science 100 (6): 4276–4286. https://doi.org/10.3168/jds.2016-12405.

    CAS  Article  PubMed  Google Scholar 

  181. Wang, S.C., C.M. Wu, S.C. Xia, Y.H. Qi, L.N. Xia, and J.Z. Shen. 2009. Distribution of superantigenic toxin genes in Staphylococcus aureus isolates from milk samples of bovine subclinical mastitis cases in two major diary production regions of China. Veterinary Microbiology 137 (3/4): 276–281. https://doi.org/10.1016/j.vetmic.2009.01.007.

    CAS  Article  PubMed  Google Scholar 

  182. Wieneke, A.A., D. Roberts, and R.J. Gilbert. 1993. Staphylococcal food poisoning in the United Kingdom, 1969-1990. Epidemiology and Infection 110 (3): 519–531. https://doi.org/10.1017/s0950268800050949.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. Wilson, G.J., K.S. Seo, R.A. Cartwright, T. Connelley, O.N. Chuang-Smith, J.A. Merriman, C.M. Guinane, J.Y. Park, G.A. Bohach, P.M. Schlievert, et al. 2011. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathogens 7 (10): e1002271. https://doi.org/10.1371/journal.ppat.1002271.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. Wolf, C., H. Kusch, S. Monecke, D. Albrecht, S. Holtfreter, C. von Eiff, W. Petzl, P. Rainard, B.M. Bröker, and S. Engelmann. 2011. Genomic and proteomic characterization of Staphylococcus aureus mastitis isolates of bovine origin. Proteomics 11 (12): 2491–2502. https://doi.org/10.1002/pmic.201000698.

    CAS  Article  PubMed  Google Scholar 

  185. Yeung, R.S. 2010. Kawasaki disease: Update on pathogenesis. Current Opinion in Rheumatology 22 (5): 551–560. https://doi.org/10.1097/bor.0b013e32833cf051.

    Article  PubMed  Google Scholar 

  186. Zaatout, N., A. Ayachi, and M. Kecha. 2020. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. Journal of Applied Microbiology 129 (5): 1102–1119. https://doi.org/10.1111/jam.14706.

    CAS  Article  PubMed  Google Scholar 

  187. Zeaki, N., Y.B. Susilo, A. Pregiel, P. Rådström, and J. Schelin. 2015. Prophage-encoded staphylococcal enterotoxin A: Regulation of production in Staphylococcus aureus strains representing different sea regions. Toxins 7 (12): 5359–5376. https://doi.org/10.3390/toxins7124889.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Zhang, D.F., X.Y. Yang, J. Zhang, X.J. Qin, X.Z. Huang, Y. Cui, M. Zhou, C.L. Shi, N.P. French, and X.M. Shi. 2018. Identification and characterization of two novel superantigens among Staphylococcus aureus complex. International Journal of Medical Microbiology 308 (4): 438–446. https://doi.org/10.1016/j.ijmm.2018.03.002.

    CAS  Article  PubMed  Google Scholar 

  189. Zhao, J.L., Y.X. Ding, H.X. Zhao, X.L. He, P.F. Li, Z.F. Li, H. Guan, and X. Guo. 2014. Presence of superantigen genes and antimicrobial resistance in Staphylococcus isolates obtained from the uteri of dairy cows with clinical endometritis. The Veterinary Record 175 (14): 352. https://doi.org/10.1136/vr.102302.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Akio Nakane and Dr. Kouji Narita, Hirosaki University Graduate School of Medicine for their valuable discussion and technical supports.

Funding

This study was supported in part by the JSPS KAKENHI Grant numbers 19590438 (D.H.), 21590475 (D.H.), 24590516 (D.H.) and 16H05030 (D.H.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Affiliations

Authors

Contributions

All authors have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Dong-Liang Hu.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, DL., Li, S., Fang, R. et al. Update on molecular diversity and multipathogenicity of staphylococcal superantigen toxins. Animal Diseases 1, 7 (2021). https://doi.org/10.1186/s44149-021-00007-7

Download citation

Keywords

  • Staphylococcus aureus
  • Superantigen
  • Enterotoxin
  • Pathogenecity
  • Food poisoning
  • Infection