Bearson, B.L., and S.M. Bearson. 2008. The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microbial Pathogenesis 44 (4): 271–278. https://doi.org/10.1016/j.micpath.2007.10.001.
Article
CAS
PubMed
Google Scholar
Bosse, J.T., Y. Li, R. Fernandez Crespo, S. Lacouture, M. Gottschalk, R. Sarkozi, et al. 2018. Comparative sequence analysis of the capsular polysaccharide loci of Actinobacillus pleuropneumoniae serovars 1-18, and development of two multiplex PCRs for comprehensive capsule typing. Veterinary Microbiology 220: 83–89. https://doi.org/10.1016/j.vetmic.2018.05.011.
Article
CAS
PubMed
PubMed Central
Google Scholar
Buelow, D.R., and T.L. Raivio. 2010. Three (and more) component regulatory systems - auxiliary regulators of bacterial histidine kinases. Molecular Microbiology 75 (3): 547–566. https://doi.org/10.1111/j.1365-2958.2009.06982.x.
Article
CAS
PubMed
Google Scholar
Cao, Y., J. Chen, G. Ren, Y. Zhang, X. Tan, and L. Yang. 2019. Punicalagin Prevents Inflammation in LPS-Induced RAW264.7 Macrophages by Inhibiting FoxO3a/Autophagy Signaling Pathway. Nutrients 11 (11): 2794. https://doi.org/10.3390/nu11112794.
Article
CAS
PubMed Central
Google Scholar
Carreras-Gonzalez, A., D. Barriales, A. Palacios, M. Montesinos-Robledo, N. Navasa, M. Azkargorta, et al. 2019. Regulation of macrophage activity by surface receptors contained within Borrelia burgdorferi-enriched phagosomal fractions. PLoS Pathogens 15 (11): e1008163. https://doi.org/10.1371/journal.ppat.1008163.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chiers, K., T. De Waele, F. Pasmans, R. Ducatelle, and F. Haesebrouck. 2010. Virulence factors of Actinobacillus pleuropneumoniae involved in colonization, persistence and induction of lesions in its porcine host. Veterinary Research 41 (5): 65. https://doi.org/10.1051/vetres/2010037.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke, M.B., D.T. Hughes, C. Zhu, E.C. Boedeker, and V. Sperandio. 2006. The QseC sensor kinase: a bacterial adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America 103 (27): 10420–10425. https://doi.org/10.1073/pnas.0604343103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dom, P., F. Haesebrouck, R. Ducatelle, and G. Charlier. 1994. In vivo association of Actinobacillus pleuropneumoniae serotype 2 with the respiratory epithelium of pigs. Infection and Immunity 62 (4): 1262–1267. https://doi.org/10.1128/iai.62.4.1262-1267.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donà, V., and V. Perreten. 2018. Comparative Genomics of the First and Complete Genome of "Actinobacillus porcitonsillarum" Supports the Novel Species Hypothesis. International Journal of Genomics 2018: 5261719. https://doi.org/10.1155/2018/5261719.
Article
CAS
PubMed
PubMed Central
Google Scholar
Frey, J. 1992. Construction of a broad host range shuttle vector for gene cloning and expression in Actinobacillus pleuropneumoniae and other Pasteurellaceae. Research in Microbiology 143 (3): 263–269. https://doi.org/10.1016/0923-2508(92)90018-j.
Article
CAS
PubMed
Google Scholar
González, W., Giménez-Lirola, L.G., Holmes, A., Lizano, S., Goodell, C., Poonsuk, K., Sitthicharoenchai, P., Sun, Y., Zimmerman, J. 2017. Detection of Actinobacillus Pleuropneumoniae ApxIV Toxin Antibody in Serum and Oral Fluid Specimens from Pigs Inoculated Under Experimental Conditions. Veterinary Research 61 (2): 163–171. https://doi.org/10.1515/jvetres-2017-0021.
Jacob-Dubuisson, F., A. Mechaly, J.M. Betton, and R. Antoine. 2018. Structural insights into the signalling mechanisms of two-component systems. Nature Reviews. Microbiology 16 (10): 585–593. https://doi.org/10.1038/s41579-018-0055-7.
Article
CAS
PubMed
Google Scholar
Ji, Y., W. Li, Y. Zhang, L. Chen, Y. Zhang, X. Zheng, X. Huang, and B. Ni. 2017. QseB mediates biofilm formation and invasion in Salmonella enterica serovar Typhi. Microbial Pathogenesis 104: 6–11. https://doi.org/10.1016/j.micpath.2017.01.010.
Article
CAS
PubMed
Google Scholar
Kaplan, J.B., and M.H. Mulks. 2005. Biofilm formation is prevalent among field isolates of Actinobacillus pleuropneumoniae. Veterinary Microbiology 108 (1–2): 89–94. https://doi.org/10.1016/j.vetmic.2005.02.011.
Article
CAS
PubMed
Google Scholar
Kaplan, J.B., K. Velliyagounder, C. Ragunath, H. Rohde, D. Mack, J.K. Knobloch, and N. Ramasubbu. 2004. Genes involved in the synthesis and degradation of matrix polysaccharide in Actinobacillus actinomycetemcomitans and Actinobacillus pleuropneumoniae biofilms. Journal of Bacteriology 186 (24): 8213–8220. https://doi.org/10.1128/JB.186.24.8213-8220.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Khajanchi, B.K., E.V. Kozlova, J. Sha, V.L. Popov, and A.K. Chopra. 2012. The two-component QseBC signalling system regulates in vitro and in vivo virulence of Aeromonas hydrophila. Microbiology 158 (Pt1): 259–271. https://doi.org/10.1099/mic.0.051805-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Labrie, J., G. Pelletier-Jacques, V. Deslandes, M. Ramjeet, E. Auger, J.H. Nash, et al. 2010. Effects of growth conditions on biofilm formation by Actinobacillus pleuropneumoniae. Veterinary Research 41 (1): 3. https://doi.org/10.1051/vetres/2009051.
Article
CAS
PubMed
Google Scholar
Lerat, E., Moran, N.A. 2004. The evolutionary history of quorum-sensing systems in bacteria. Molecular Biology and Evolution 21 (5): 903–13. https://doi.org/10.1093/molbev/msh097.
Li, H., F. Liu, W. Peng, K. Yan, H. Zhao, T. Liu, H. Cheng, P. Chang, F. Yuan, H. Chen, and W. Bei. 2018. The CpxA/CpxR two-component system affects biofilm formation and virulence in Actinobacillus pleuropneumoniae. Frontiers in Cellular and Infection Microbiology 8: 72. https://doi.org/10.3389/fcimb.2018.00072 eCollection 2018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li, J., Q. Fan, M. Jin, C. Mao, H. Zhang, X. Zhang, L. Sun, D. Grenier, L. Yi, X. Hou, and Y. Wang. 2021. Paeoniflorin reduce luxS/AI-2 system-controlled biofilm formation and virulence in Streptococcus suis. Virulence 12 (1): 3062–3073. https://doi.org/10.1080/21505594.2021.2010398.
Article
CAS
PubMed
Google Scholar
Li, L., Z. Xu, Y. Zhou, T. Li, L. Sun, H. Chen, and R. Zhou. 2011. Analysis on Actinobacillus pleuropneumoniae LuxS regulated genes reveals pleiotropic roles of LuxS/AI-2 on biofilm formation, adhesion ability and iron metabolism. Microbial Pathogenesis 50 (6): 293–302. https://doi.org/10.1016/j.micpath.2011.02.002.
Article
CAS
PubMed
Google Scholar
Li, W., M. Xue, L. Yu, K. Qi, J. Ni, X. Chen, R. Deng, F. Shang, and T. Xue. 2020. QseBC is involved in the biofilm formation and antibiotic resistance in Escherichia coli isolated from bovine mastitis. PeerJ 8: e8833. https://doi.org/10.7717/peerj.8833.
Article
PubMed
PubMed Central
Google Scholar
Liu, F., J. Fu, C. Liu, J. Chen, M. Sun, H. Chen, C. Tan, and X. Wang. 2017. Characterization and distinction of two flagellar systems in extraintestinal pathogenic Escherichia coli PCN033. Microbiological Research 196: 69–79. https://doi.org/10.1016/j.micres.2016.11.013.
Article
CAS
PubMed
Google Scholar
Liu, J., L. Hu, Z. Xu, C. Tan, F. Yuan, S. Fu, H. Cheng, H. Chen, and W. Bei. 2015. Actinobacillus pleuropneumoniae two-component system QseB/QseC regulates the transcription of PilM, an important determinant of bacterial adherence and virulence. Veterinary Microbiology 177 (1-2): 184–192. https://doi.org/10.1016/j.vetmic.2015.02.033.
Article
CAS
PubMed
Google Scholar
Livak, K.J., and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method. Methods 25 (4): 402–408. https://doi.org/10.1006/meth.2001.1262.
Article
CAS
PubMed
Google Scholar
Mukherjee, S., and B.L. Bassler. 2019. Bacterial quorum sensing in complex and dynamically changing environments. Nature Reviews Microbiology 17 (6): 371–382. https://doi.org/10.1038/s41579-019-0186-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Novak, E.A., H. Shao, C.A. Daep, and D.R. Demuth. 2010. Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infection and Immunity 78 (7): 2919–2926. https://doi.org/10.1128/IAI.01376-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oswald, W., W. Tonpitak, G. Ohrt, and G. Gerlach. 1999. A single-step transconjugation system for the introduction of unmarked deletions into Actinobacillus pleuropneumoniae serotype 7 using a sucrose sensitivity marker. FEMS Microbiology Letters 179 (1): 153–160. https://doi.org/10.1111/j.1574-6968.1999.tb08721.x.
Article
CAS
PubMed
Google Scholar
Rode, T.M., T. Møretrø, S. Langsrud, O. Langsrud, G. Vogt, and A. Holck. 2010. Responses of Staphylococcus aureus exposed to HCl and organic acid stress. Canadian Journal of Microbiology 56 (9): 777–792. https://doi.org/10.1139/w10-057.
Article
CAS
PubMed
Google Scholar
Sassu, E.L., J.T. Bosse, T.J. Tobias, M. Gottschalk, P.R. Langford, and I. HennigPauka. 2018. Update on Actinobacillus pleuropneumoniae-knowledge, gaps and challenges. Transboundary and Emerging Diseases 65 (Suppl. 1): 72–90. https://doi.org/10.1111/tbed.12739.
Article
PubMed
Google Scholar
Stringer, O.W., J.T. Bossé, S. Lacouture, M. Gottschalk, L. Fodor, Ø. Angen, E. Velazquez, P. Penny, L. Lei, P.R. Langford, and Y. Li. 2021. Proposal of Actinobacillus pleuropneumoniae serovar 19, and reformulation of previous multiplex PCRs for capsule-specific typing of all known serovars. Veterinary Microbiology 255: 109021. https://doi.org/10.1016/j.vetmic.2021.109021.
Article
CAS
PubMed
Google Scholar
To, H., M. Kon, F. Koike, K. Shibuya, S. Nagai, M. Gottschalk, J. Frey, and C. Sasakawa. 2021. Proposal of a subtype of serovar 4, K4b:O3, of Actinobacillus pleuropneumoniae based on serological and genotypic analysis. Veterinary Microbiology 263: 109279. https://doi.org/10.1016/j.vetmic.2021.109279.
Article
CAS
PubMed
Google Scholar
Vogt, S.L., and T.L. Raivio. 2012. Just scratching the surface: an expanding view of the Cpx envelope stress response. FEMS Microbiology Letters 326 (1): 2–11. https://doi.org/10.1111/j.1574-6968.2011.02406.x.
Article
CAS
PubMed
Google Scholar
Walters, M., M.P. Sircili, and V. Sperandio. 2006. AI-3 synthesis is not dependent on luxS in Escherichia coli. Journal of Bacteriology 188 (16): 5668–5681. https://doi.org/10.1128/JB.00648-06.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weigel, W.A., and D.R. Demuth. 2016. QseBC, a two-component bacterial adrenergic receptor and global regulator of virulence in Enterobacteriaceae and Pasteurellaceae. Molecular Oral Microbiology 31 (5): 379–397. https://doi.org/10.1111/omi.12138.
Article
CAS
PubMed
Google Scholar
Xie, F., G. Li, Y. Zhang, L. Zhou, S. Liu, and S. Liu. 2016. The Lon protease homologue LonA, not LonC, contributes to the stress tolerance and biofilm formation of Actinobacillus pleuropneumoniae. Microbial Pathogenesis 93: 38–43. https://doi.org/10.1016/j.micpath.2016.01.009.
Article
CAS
PubMed
Google Scholar
Xu, Z., Y. Zhou, L. Li, R. Zhou, S. Xiao, Y. Wan, S. Zhang, K. Wang, W. Li, L. Li, H. Jin, M. Kang, B. Dalai, T. Li, L. Liu, Y. Cheng, L. Zhang, T. Xu, H. Zheng, S. Pu, B. Wang, W. Gu, X.L. Zhang, G.F. Zhu, S. Wang, G.P. Zhao, and H. Chen. 2008. Genome biology of Actinobacillus pleuropneumoniae JL03, an isolate of serotype 3 prevalent in China. PLoS One 3 (1): e1450. https://doi.org/10.1371/journal.pone.0001450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yan, K., T. Liu, B. Duan, F. Liu, M. Cao, W. Peng, Q. Dai, H. Chen, F. Yuan, and W. Bei. 2020. The CpxAR Two-Component System Contributes to Growth, Stress Resistance, and Virulence of Actinobacillus pleuropneumoniae by Upregulating wecA Transcription. Frontiers in Microbiology 11: 1026. https://doi.org/10.3389/fmicb.2020.01026.
Article
PubMed
PubMed Central
Google Scholar
Yang, Y., P. Hu, L. Gao, X. Yuan, P.R. Hardwidge, T. Li, P. Li, F. He, Y. Peng, and N. Li. 2021. Deleting qseC downregulates virulence and promotes cross-protection in Pasteurella multocida. Veterinary Research 52 (1): 140. https://doi.org/10.1186/s13567-021-01009-6.
Article
PubMed
PubMed Central
Google Scholar
Yin, Y., and H. Mimura. 2020. Mitigation of Hyper KCl Stress at 42°C with Externally Existing Sodium Glutamate to a Halotolerant Brevibacterium sp. JCM 6894. Biocontrol Science 25 (3): 139–147. https://doi.org/10.4265/bio.25.139.
Article
CAS
PubMed
Google Scholar
Yuan, F., Y. Liao, W. You, Z. Liu, Y. Tan, C. Zheng, BinWang, D. Zhou, Y. Tian, and W. Bei. 2014. Deletion of the znuA virulence factor attenuates Actinobacillus pleuropneumoniae and confers protection against homologous or heterologous strain challenge. Veterinary Microbiology 174 (3-4): 531–539. https://doi.org/10.1016/j.vetmic.2014.10.016.
Article
CAS
PubMed
Google Scholar
Zhou, Y., L. Li, Z. Chen, H. Yuan, H. Chen, and R. Zhou. 2013. Adhesion protein ApfA of Actinobacillus pleuropneumoniae is required for pathogenesis and is a potential target for vaccine development. Clinical and Vaccine Immunology 20 (2): 287–294. https://doi.org/10.1128/CVI.00616-12.
Article
CAS
PubMed
PubMed Central
Google Scholar